ascorbic-acid has been researched along with fructooligosaccharide* in 2 studies
2 other study(ies) available for ascorbic-acid and fructooligosaccharide
Article | Year |
---|---|
In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics.
Iron is essential for development and growth in young children; unfortunately, iron deficiency (ID) is a significant public health problem in this population. Young Child Formulae (YCF), milk-derived products fortified with iron and ascorbic acid (AA, an enhancer of iron absorption) may be good sources of iron to help prevent ID. Furthermore, some YCF are supplemented with prebiotics, non-digestible carbohydrates suggested to enhance iron bioavailability. The aim of our study was to evaluate iron bioavailability of YCF relative to prebiotic and AA concentrations. We hypothesised that YCF with the highest levels of prebiotics and AA would have the most bioavailable iron.. We used the in vitro digestion/Caco-2 cell model to measure iron bioavailability from 4 commercially available YCF with approximately equal amounts of iron, but varying amounts of: AA and the prebiotics fructo- and galacto-oligosaccharides. Caco-2 cell ferritin formation was used as a surrogate marker for iron bioavailability.. The YCF with the highest concentration of prebiotics and AA had the highest iron bioavailability; conversely, the YCF with the lowest concentration of prebiotics and AA had the lowest. After the addition of exogenous prebiotics, so that all tested YCF had equivalent amounts, there was no longer a significant difference between YCF iron bioavailability.. Our results suggest that ascorbic acid and prebiotics in YCF improve iron bioavailability. Ensuring that iron is delivered in a bioavailable form would improve the nutritional benefits of YCF in relation to ID/IDA amongst young children; therefore, further exploration of our findings in vivo is warranted. Topics: Ascorbic Acid; Biomarkers; Caco-2 Cells; Child Nutritional Physiological Phenomena; Child, Preschool; Digestion; Enterocytes; Ferritins; Foods, Specialized; Hot Temperature; Humans; Infant; Infant Formula; Infant Nutritional Physiological Phenomena; Intestinal Absorption; Iron, Dietary; Nutritive Value; Oligosaccharides; Prebiotics; Trisaccharides | 2018 |
Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated Balb/cJ mice.
Long-term d-galactose injection induces accelerated aging in experimental rodent models. The aim of this study was to determine the effects of dietary fructo-oligosaccharide (FO) on the brain β-amyloid (Aβ), amyloid-associated enzymes, cognitive function, and plasma antioxidant levels in d-galactose-treated Balb/c mice.. The subcutaneous (s.c.) injection and the dietary treatment were conducted simultaneously for 49 days. Mice (12 weeks of age) were divided into five groups (n = 14/group): control (s.c. saline, control diet) serving as a young control, DG (s.c. 1.2 g d-galactose/kg body weight, control diet), DG + LFO (2.5% w/w FO, low-dose FO diet), DG + HFO (5% w/w FO, high-dose FO diet), and DG + E (α-tocopherol 0.2% w/w, vitamin E diet) as an antioxidant reference group. Another group of older mice (64 weeks of age) without any injection served as a natural aging (NA) group.. The DG and NA groups had greater Aβ levels in the cortex, hippocampus, and the whole brain. High-dose FO, similar to α-tocopherol, attenuated the d-galactose-induced Aβ density in the cortex and hippocampus. In addition, FO attenuated the d-galactose-induced protein expression of Aβ and beta-site amyloid precursor cleaving enzyme of the whole brain in a dose-response manner. Either dose of FO supplementation, similar to α-tocopherol, attenuated the d-galactose-induced cognitive dysfunction. In addition, FO improved the plasma ascorbic acid level in a dose-response manner.. Dietary FO (2.5-5% w/w diet) could attenuate the development of Alzheimer's disease, which was likely to be associated with its systematic antioxidant effects. Topics: alpha-Tocopherol; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Antioxidants; Ascorbic Acid; Brain; Cognition; Cognition Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Galactose; Male; Mice; Mice, Inbred BALB C; Oligosaccharides | 2017 |