ascorbic-acid and dimedone

ascorbic-acid has been researched along with dimedone* in 2 studies

Other Studies

2 other study(ies) available for ascorbic-acid and dimedone

ArticleYear
Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    The FEBS journal, 2013, Volume: 280, Issue:23

    Cellular exposure to reactive oxygen species induces rapid oxidation of DNA, proteins, lipids and other biomolecules. At the proteome level, cysteine thiol oxidation is a prominent post-translational process that is implicated in normal physiology and numerous pathologies. Methods for investigating protein oxidation include direct labeling with selective chemical probes and indirect tag-switch techniques. Common to both approaches is chemical blocking of free thiols using reactive electrophiles to prevent post-lysis oxidation or other thiol-mediated cross-reactions. These reagents are used in large excess, and their reactivity with cysteine sulfenic acid, a critical oxoform in numerous proteins, has not been investigated. Here we report the reactivity of three thiol-blocking electrophiles, iodoacetamide, N-ethylmaleimide and methyl methanethiosulfonate, with protein sulfenic acid and dimedone, the structural core of many sulfenic acid probes. We demonstrate that covalent cysteine -SOR (product) species are partially or fully susceptible to reduction by dithiothreitol, tris(2-carboxyethyl)phosphine and ascorbate, regenerating protein thiols, or, in the case of ascorbate, more highly oxidized species. The implications of this reactivity on detection methods for protein sulfenic acids and S-nitrosothiols are discussed.

    Topics: Ascorbic Acid; Cyclohexanones; Cysteine; Dithiothreitol; Ethylmaleimide; Iodoacetamide; Methyl Methanesulfonate; Oxidation-Reduction; Proteins; Reactive Oxygen Species; Spectrometry, Mass, Electrospray Ionization; Sulfenic Acids; Sulfhydryl Compounds

2013
Potential role of formaldehyde in the mechanism of action of ascorbigens on the basis of BioArena studies.
    Biomedical chromatography : BMC, 2009, Volume: 23, Issue:4

    The effect of ascorbigen and 1'-methylascorbigen as a model compound pair was studied on the phytopathogenic bacterium Pseudomonas savastanoi pv. phaseolicola in the BioArena experimental system after overpressured layer chromatography. Results showed a characteristic, strong antibacterial effect of 1'-methylascorbigen and weak effect of ascorbigen present on the adsorbent layer as chromatographic spot. Addition of formaldehyde capture compounds (L-arginine, glutathione, dimedone) partially or totally reduced the antibacterial effect of 1'-methylascorbigen and ascorbigen. On adding Cu(II) ions--which mobilize and coordinate formaldehyde--to the culture medium, the antibacterial effect of both compounds became stronger. It is supposed that the weak antibacterial effect of ascorbigen may have originated from the 1'-methylascorbigen formed in situ on the adsorbent layer by partial enzymatic methylation of ascorbigen.

    Topics: Anti-Bacterial Agents; Arginine; Ascorbic Acid; Chromatography, Thin Layer; Copper; Cyclohexanones; Formaldehyde; Glutathione; Indoles; Pseudomonas

2009