ascorbic-acid and dihydrorhodamine-123

ascorbic-acid has been researched along with dihydrorhodamine-123* in 8 studies

Other Studies

8 other study(ies) available for ascorbic-acid and dihydrorhodamine-123

ArticleYear
Monitoring Cr intermediates and reactive oxygen species with fluorescent probes during chromate reduction.
    Chemical research in toxicology, 2014, May-19, Volume: 27, Issue:5

    Cr(VI) genotoxicity is caused by products of its reductive metabolism inside the cells. Reactive oxygen species (ROS) and Cr(V,IV) intermediates are potential sources of oxidative damage by Cr(VI). Here, we investigated seven fluorescent probes for the detection of ROS and non-ROS oxidants in Cr(VI) reactions with its main reducers. We found that Cr(V)-skipping metabolism of Cr(VI) by ascorbate in vitro gave no responses with all tested dyes, indicating nonreactivity of Cr(IV) and absence of ROS. Cr(VI) reduction with glutathione (GSH) or Cys strongly enhanced the fluorescence of dichlorofluorescein (DCF) and dihydrorhodamine 123 (DHR123) but produced minimal fluorescence with dihydroethidium and no increases with aminophenylfluorescein and CellRox Green, Orange, and Red. Several tests showed that Cr(VI)-thiol reactions lacked ROS and that Cr(V) caused oxidation of DCF and DHR123. DCF reacted only with free Cr(V), whereas DHR123 detected both the free Cr(V) and Cr(V)-GSH complex. We estimated that Cr(VI)-GSH reactions generated approximately 75% Cr(V)-GSH and 25% free Cr(V), whereas Cys reactions appeared to produce only free Cr(V). DHR123 measurements in H460 cells showed that reduction of Cr(VI) was complete within 20 min postexposure, but it lasted at least 1 h without GSH. Cells with restored ascorbate levels exhibited no DCF or DHR123 oxidation by Cr(VI). Overall, our results demonstrated that Cr(VI) metabolism with its biological reducers lacked ROS and that DHR123 and DCF responses were indicators of total and free Cr(V), respectively. CellRox dyes, dihydroethidium and aminophenylfluorescein, are insensitive to Cr(V,IV) and can be used for monitoring ROS during coexposure to Cr(VI) and oxidants.

    Topics: Ascorbic Acid; Cell Line; Chromates; Epithelial Cells; Fluoresceins; Fluorescent Dyes; Glutathione; Humans; Oxidation-Reduction; Reactive Oxygen Species; Rhodamines

2014
Divergent effects of alpha-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype.
    Antioxidants & redox signaling, 2010, Volume: 12, Issue:2

    The haptoglobin (Hp) 2-2 genotype is associated with increased risk of cardiovascular disease (CVD) in diabetes (DM). We recently proposed this increased risk arises from the tethering of redox active hemoglobin (Hb) to high density lipoprotein (HDL), thereby resulting in oxidative modification of HDL. Clinical trials have demonstrated that vitamin E (alpha-tocopherol) decreases while vitamin C increases CVD in Hp 2-2 DM individuals. We sought to test the hypothesis that the interaction of alpha-tocopherol or vitamin C on CVD in Hp 2-2 DM was due to their divergent effects on HDL oxidation and function. Vitamin C significantly increased while alpha-tocopherol completely blocked oxidation mediated by glycosylated Hb-Hp 2-2. Vitamin C had no benefit while alpha-tocopherol completely restored HDL function in Hp 2-2 DM mice. Co-administration of vitamin C mitigated the protective effects of alpha-tocopherol on HDL. There exists a pharmacogenomic interaction between vitamin C and alpha-tocopherol and the Hp 2-2 genotype on HDL function and structure. Choosing the correct antioxidant in the correct subset of patients may be critical in order to demonstrate benefit from antioxidant therapy.

    Topics: alpha-Tocopherol; Animals; Antioxidants; Ascorbic Acid; Biological Transport; Cell Line; Cholesterol; Diabetes Mellitus; Genotype; Haptoglobins; Hemoglobins; Humans; Iron Chelating Agents; Lipid Peroxidation; Lipoproteins, HDL; Mice; Mice, Transgenic; Oxidation-Reduction; Protein Binding; Rhodamines

2010
The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice.
    Toxicology, 2007, Mar-22, Volume: 232, Issue:1-2

    Microcystin-LR (MC-LR) produced by cyanobacteria in diverse water systems is a potent specific hepatotoxin and has been documented to induce hepatocyte apoptosis and liver injury; however, the mechanisms have not been fully elucidated. In the present study, we investigated whether MC-LR stimulated ROS generation in the liver of mice and the role of ROS in the pathogenesis of MC-LR-induced liver injury in vivo. MC-LR treatment (60 microg/kg of body weight) for 12h prompted large amount of ROS generation in mice liver, upregulated the expression of Bax and Bid, caused the mitochondrial membrane potential (MMP) loss and hepatocyte apoptosis as well as liver injury. While pretreatment with antioxidants, oral administration of vitamin C (250mg/kg of body weight, dissolved in double distill water) and vitamin E (200mg/kg of body weight, dissolved in corn oil) per day for 3 days continually, significantly reduced the generation of ROS and effectively inhibited the MC-LR-induced hepatocyte apoptosis and liver injury, suggesting that ROS played a critical role in MC-LR-induced hepatocyte apoptosis and liver injury. The protective effect of vitamin C and E also suggested the potential interest in the clinical treatment of MC-LR-induced liver injury and hepatotoxicity.

    Topics: Alanine Transaminase; Animals; Antioxidants; Apoptosis; Ascorbic Acid; Aspartate Aminotransferases; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Chemical and Drug Induced Liver Injury; Hepatocytes; Histocytochemistry; Liver Diseases; Male; Malondialdehyde; Marine Toxins; Membrane Potential, Mitochondrial; Mice; Mice, Inbred ICR; Microcystins; Random Allocation; Reactive Oxygen Species; Rhodamines; Vitamin E

2007
Further investigations on the role of ascorbic acid in stratum corneum lipid models after UV exposure.
    The Journal of pharmacy and pharmacology, 2005, Volume: 57, Issue:8

    This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.

    Topics: Ascorbic Acid; Cell Line; Ceramides; Cholesterol; Electron Spin Resonance Spectroscopy; Ferrous Compounds; Humans; Keratinocytes; Linoleic Acid; Lipid Peroxidation; Liposomes; Membrane Lipids; Reactive Oxygen Species; Rhodamines; Skin; Ultraviolet Rays

2005
S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-).
    Free radical biology & medicine, 2003, Apr-15, Volume: 34, Issue:8

    To elucidate potential mechanisms of S-nitrosothiol formation in vivo, we studied nitrosation of GSH and albumin by nitric oxide ((*)NO), peroxynitrite, and (*)NO/O(2)(*)(-). In the presence of O(2), (*)NO yielded 20% of S-nitrosoglutathione (GSNO) at pH 7.5. Ascorbate and the spin trap 4-hydroxy-[2,2,4,4-tetramethyl-piperidine-1-oxyl] (TEMPOL) inhibited GSNO formation by 67%. Electron paramagnetic resonance spectroscopy with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) demonstrated intermediate formation of glutathionyl radicals, suggesting that GSNO formation by (*)NO/O(2) is predominantly mediated by (*)NO(2). Peroxynitrite-triggered GSNO formation (0.06% yield) was stimulated 10- and 2-fold by ascorbate and TEMPOL, respectively. Co-generation of (*)NO and O(2)(*)(-) at equal fluxes yielded less GSNO than (*)NO alone, but was 100-fold more efficient (8% yield) than peroxynitrite. Moreover, in contrast to the reaction of peroxynitrite, GSNO formation by (*)NO/O(2)(*)(-) was inhibited by ascorbate. Similar results were obtained with albumin instead of GSH. We propose that sulfhydryl compounds react with O(2)(*)(-) to initiate a chain reaction that forms radical intermediates which combine with (*)NO to yield GSNO. In RAW 264.7 macrophages, S-nitrosothiol formation by (*)NO/O(2) and (*)NO/O(2)(*)(-) occurred with relative efficiencies comparable to those in solution. Our results indicate that concerted generation of (*)NO and O(2)(*)(-) may essentially contribute to nitrosative stress in inflammatory diseases.

    Topics: Albumins; Ascorbic Acid; Cyclic N-Oxides; Dose-Response Relationship, Drug; Electron Spin Resonance Spectroscopy; Free Radicals; Glutathione; Hydrogen-Ion Concentration; Macrophages; Models, Chemical; Nitric Oxide; Nitric Oxide Donors; Nitrosation; Oxygen; Peroxynitrous Acid; Reactive Oxygen Species; Rhodamines; S-Nitrosoglutathione; Spin Labels; Time Factors

2003
Labile plasma iron in iron overload: redox activity and susceptibility to chelation.
    Blood, 2003, Oct-01, Volume: 102, Issue:7

    Plasma non-transferrin-bound-iron (NTBI) is believed to be responsible for catalyzing the formation of reactive radicals in the circulation of iron overloaded subjects, resulting in accumulation of oxidation products. We assessed the redox active component of NTBI in the plasma of healthy and beta-thalassemic patients. The labile plasma iron (LPI) was determined with the fluorogenic dihydrorhodamine 123 by monitoring the generation of reactive radicals prompted by ascorbate but blocked by iron chelators. The assay was LPI specific since it was generated by physiologic concentrations of ascorbate, involved no sample manipulation, and was blocked by iron chelators that bind iron selectively. LPI, essentially absent from sera of healthy individuals, was present in those of beta-thalassemia patients at levels (1-16 microM) that correlated significantly with those of NTBI measured as mobilizer-dependent chelatable iron or desferrioxamine chelatable iron. Oral treatment of patients with deferiprone (L1) raised plasma NTBI due to iron mobilization but did not lead to LPI appearance, indicating that L1-chelated iron in plasma was not redox active. Moreover, oral L1 treatment eliminated LPI in patients. The approach enabled the assessment of LPI susceptibility to in vivo or in vitro chelation and the potential of LPI to cause tissue damage, as found in iron overload conditions.

    Topics: Ascorbic Acid; Cohort Studies; Humans; Iron; Iron Chelating Agents; Iron Overload; Oxidation-Reduction; Rhodamines; Thalassemia; Transferrin

2003
Comparison of uric acid and ascorbic acid in protection against EAE.
    Free radical biology & medicine, 2002, Nov-15, Volume: 33, Issue:10

    Serum levels of uric acid (UA), an inhibitor of peroxynitrite- (ONOO-) related chemical reactions, became elevated approximately 30 million years ago in hominid evolution. During a similar time frame, higher mammals lost the ability to synthesize another important radical scavenger, ascorbic acid (AA), leading to the suggestion that UA may have replaced AA as an antioxidant. However, in vivo treatment with AA does not protect against the development of experimental allergic encephalomyelitis (EAE), a disease that has been associated with the activity of ONOO- and is inhibited by UA. When compared in vitro, UA and AA were found to have similar capacities to inhibit the nitrating properties of ONOO-. However UA and AA had different capacities to prevent ONOO- -mediated oxidation, especially in the presence of iron ion (Fe3+). While UA at physiological concentrations effectively blocked dihydrorhodamine-123 oxidation in the presence of Fe3+, AA did not, regardless of whether the source of ONOO- was synthetic ONOO-, SIN-1, or RAW 264.7 cells. AA also potentiated lipid peroxidation in vivo and in vitro. In conclusion, the superior protective properties of UA in EAE may be related to its ability to neutralize the oxidative properties of ONOO- in the presence of free iron ions.

    Topics: Albumins; Animals; Antioxidants; Ascorbic Acid; Blood-Brain Barrier; Cell Line; Encephalomyelitis, Autoimmune, Experimental; Free Radicals; Immunohistochemistry; Iron; Lipid Peroxidation; Mice; Molsidomine; Myelin Sheath; Nitric Oxide; Oxygen; Peroxynitrous Acid; Rhodamines; Time Factors; Tyrosine; Uric Acid

2002
Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions. Evidence that ascorbate acts by re-reducing substrate radicals produced by peroxynitrite.
    The Journal of biological chemistry, 2000, Jun-02, Volume: 275, Issue:22

    Peroxynitrite (ONOO(((-)))/ONOOH) is expected in vivo to react predominantly with CO(2), thereby yielding NO(2)(.) and CO(3) radicals. We studied the inhibitory effects of ascorbate on both NADH and dihydrorhodamine 123 (DHR) oxidation by peroxynitrite generated in situ from 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). SIN-1 (150 micrometer)-mediated oxidation of NADH (200 micrometer) was half-maximally inhibited by low ascorbate concentrations (61-75 micrometer), both in the absence and presence of CO(2). Control experiments performed with thiols indicated both the very high antioxidative efficiency of ascorbate and that in the presence of CO(2) in situ-generated peroxynitrite exclusively oxidized NADH via the CO(3) radical. This fact is attributed to the formation of peroxynitrate (O(2)NOO(-)/O(2)NOOH) from reaction of NO(2)(.) with O(2), which is formed from reaction of CO(3) with NADH. SIN-1 (25 micrometer)-derived oxidation of DHR was half-maximally inhibited by surprisingly low ascorbate concentrations (6-7 micrometer), irrespective of the presence of CO(2). Control experiments performed with authentic peroxynitrite revealed that ascorbate was in regard to both thiols and selenocompounds much more effective to protect DHR. The present results demonstrate that ascorbate is highly effective to counteract the oxidizing properties of peroxynitrite in the absence and presence of CO(2) by both terminating CO(3)/HO( small middle dot) reactions and by its repair function. Ascorbate is therefore expected to act intracellulary as a major peroxynitrite antagonist. In addition, a novel, ascorbate-independent protection pathway exists: scavenging of NO(2)(.) by O(2) to yield O(2)NOO(-), which further decomposes into NO(2)(-) and O(2).

    Topics: Animals; Antioxidants; Ascorbic Acid; Cattle; Free Radicals; NAD; Nitrates; Oxidation-Reduction; Rhodamines

2000