ascorbic-acid has been researched along with dihydroethidium* in 3 studies
3 other study(ies) available for ascorbic-acid and dihydroethidium
Article | Year |
---|---|
TEMPOL increases NAD(+) and improves redox imbalance in obese mice.
Continuous energy conversion is controlled by reduction-oxidation (redox) processes. NAD(+) and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD(+) production in the ascorbic acid-glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD(+)/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD(+)/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. Topics: Animals; Antioxidants; Ascorbic Acid; Cyclic N-Oxides; Diet, High-Fat; Electron Spin Resonance Spectroscopy; Energy Metabolism; Ethidium; Glutathione; Humans; Mice; Mice, Obese; NAD; Obesity; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Spin Labels | 2016 |
Involvement of PI3K-AKT-mTOR pathway in protein kinase CKII inhibition-mediated senescence in human colon cancer cells.
Cellular senescence is a tumor suppression mechanism. We previously reported that CKII downregulation induces senescence in human lung fibroblast IMR-90 and colon cancer HCT116 cells. In this study, potential longevity drugs, including rapamycin, vitamin C, and vitamin E, blocked CKII downregulation-mediated senescence through reduction of reactive oxygen species (ROS) production in HCT116 cells. Since rapamycin is a mammalian target of rapamycin (mTOR) inhibitor, we examined the roles of mTOR and its upstream regulators phosphatidylinositol 3-kinase (PI3K) and AKT in CKII inhibition-mediated senescence. CKIIα knock-down or CKII inhibitor treatment strikingly increased phosphorylation of mTOR, p70S6K, an mTOR substrate, and AKT, whereas CKIIα overexpression reduced this phosphorylation event. This result indicated that CKII inhibition activated the PI3K-AKT-mTOR pathway. Further, pharmacological inhibition of PI3K and AKT attenuated ROS production and senescence in CKII-downregulated cells. Taken together, these results demonstrate, for the first time, that the PI3K-AKT-mTOR-ROS pathway is necessary for CKII inhibition-mediated cellular senescence. Topics: Ascorbic Acid; Casein Kinase II; Cellular Senescence; Enzyme Activation; Enzyme Assays; Ethidium; Fluoresceins; Fluorescence; HCT116 Cells; Humans; Hydrogen Peroxide; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Ribosomal Protein S6 Kinases, 70-kDa; RNA Interference; RNA, Small Interfering; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Vitamin E | 2013 |
ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species.
Recent studies implicate reactive oxygen species (ROS) such as superoxide anions and H(2)O(2) in the proliferation of systemic vascular smooth muscle cells (SMCs). However, the role of ROS in SMC proliferation within the pulmonary circulation remains unclear. We investigated the effects of endothelin-1 (ET-1), a potential SMC mitogen, on ROS production and proliferation of fetal pulmonary artery SMCs (FPASMCs). Exposure to ET-1 resulted in increases in superoxide production and viable FPASMCs after 72 h. These increases were prevented by pretreatment with PD-156707. Treatment with pertussis toxin blocked the effects of ET-1, whereas cholera toxin stimulated superoxide production and increased viable cell numbers even in the absence of ET-1. Wortmannin, LY-294002, diphenyleneiodonium (DPI), 4-(2-aminoethyl)benzenesulfonyl fluoride, and apocynin also prevented the ET-1-mediated increases in superoxide production and viable cell numbers. Exposure to H(2)O(2) or diethyldithiocarbamate increased viable cell number by 37% and 50%, respectively. Conversely, ascorbic acid and DPI decreased viable cell number, which appeared to be due to an increase in programmed cell death. Our data suggest that ET-1 exerts a mitogenic effect on FPASMCs via an increase in ROS production and that antioxidants can block this effect via induction of apoptosis. Antioxidant treatment may therefore represent a potential therapy for pulmonary vascular diseases. Topics: Animals; Antioxidants; Ascorbic Acid; Cell Division; Cells, Cultured; Chelating Agents; Culture Media, Serum-Free; Dioxoles; Ditiocarb; Endothelin-1; Enzyme Inhibitors; Ethidium; Fluorescent Dyes; Microscopy, Fluorescence; Muscle, Smooth, Vascular; Pulmonary Artery; Reactive Oxygen Species; Sheep; Signal Transduction | 2001 |