ascorbic-acid and caffeic-acid-phenethyl-ester

ascorbic-acid has been researched along with caffeic-acid-phenethyl-ester* in 6 studies

Other Studies

6 other study(ies) available for ascorbic-acid and caffeic-acid-phenethyl-ester

ArticleYear
NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting "stemness".
    Oncotarget, 2017, Mar-28, Volume: 8, Issue:13

    Here, we assembled a broad molecular "tool-kit" to interrogate the role of metabolic heterogeneity in the propagation of cancer stem-like cells (CSCs). First, we subjected MCF7 cells to "metabolic fractionation" by flow cytometry, using fluorescent mitochondrial probes to detect PCG1α activity, as well ROS and hydrogen-peroxide (H2O2) production; NADH levels were also monitored by auto-fluorescence. Then, the various cell populations were functionally assessed for "stem cell activity", using the mammosphere assay (3D-spheroids). Our results indicate that a sub-population of MCF7 cells, with increased PGC1α activity, high mitochondrial ROS/H2O2 production and high NADH levels, all form mammospheres with a higher efficiency. Thus, it appears that mitochondrial oxidative stress and the anti-oxidant response both contribute to the promotion of mitochondrial biogenesis and oxidative metabolism in CSCs. Further validation was provided by using specific inhibitors to target metabolic processes (the NAD+ salvage pathway, glycolysis, mitochondrial protein synthesis and OXPHOS), significantly reducing CSC propagation. As a consequence, we have now identified a variety of clinically-approved drugs (stiripentol), natural products (caffeic acid phenyl ester (CAPE), ascorbic acid, silibinin) and experimental pharmaceuticals (actinonin, FK866, 2-DG), that can be used to effectively inhibit CSC activity. We discuss the use of CAPE (derived from honey-bee propolis) and Vitamin C, as potential natural therapeutic modalities. In this context, Vitamin C was ~10 times more potent than 2-DG for the targeting of CSCs. Similarly, stiripentol was between 50 to 100 times more potent than 2-DG.

    Topics: Antineoplastic Agents; Ascorbic Acid; Biomarkers, Tumor; Caffeic Acids; Cell Proliferation; Dioxolanes; Flow Cytometry; Humans; MCF-7 Cells; NAD; Neoplastic Stem Cells; Optical Imaging; Phenylethyl Alcohol

2017
Design, synthesis and pharmacological evaluation of (E)-3,4-dihydroxy styryl sulfonamides derivatives as multifunctional neuroprotective agents against oxidative and inflammatory injury.
    Bioorganic & medicinal chemistry, 2013, Sep-01, Volume: 21, Issue:17

    A novel class of (E)-3,4-dihydroxy styryl sulfonamides and their 3,4-diacetylated derivatives as caffeic acid phenethyl ester (CAPE) analogs was designed and prepared for improving stability and solubility of the lead compound. Their neuroprotective properties were assessed by several models. The results showed that target compounds displayed positive free radical quenching abilities, superior to that of CAPE. Compounds 6j-k and 7j-k demonstrated remarkable protection effects against damage induced by hydrogen peroxide which were apparently stronger than that of CAPE. Most of target compounds could inhibit nitric oxide production. Additionally, target compounds showed high blood-brain barrier permeability.

    Topics: Animals; Blood-Brain Barrier; Caffeic Acids; Cell Line, Tumor; Drug Design; Free Radical Scavengers; Mice; Microglia; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Phenylethyl Alcohol; Rats; Stereoisomerism; Sulfonamides

2013
Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines.
    Chemico-biological interactions, 2010, Oct-06, Volume: 188, Issue:1

    In the current work, we investigated the in vitro biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O(2) and HRP/H(2)O(2) were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress in CAPE induced toxicity in melanoma cells. Ethylenediamine, an o-quinone trap, prevented the formation of o-quinone and oxidations of AA and NADH mediated by tyrosinase bioactivation of CAPE. The IC(50) of CAPE towards SK-MEL-28 melanoma cells was 15muM. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased CAPE's toxicity towards SK-MEL-28 cells indicating quinone formation played an important role in CAPE induced cell toxicity. Cyclosporin-A and trifluoperazine, inhibitors of the mitochondrial membrane permeability transition pore (PTP), prevented CAPE toxicity towards melanoma cells. We further investigated the role of tyrosinase in CAPE toxicity in the presence of a shRNA plasmid, targeting tyrosinase mRNA. Results from tyrosinase shRNA experiments showed that CAPE led to negligible anti-proliferative effect, apoptotic cell death and ROS formation in shRNA plasmid treated cells. Furthermore, it was also found that CAPE selectively caused escalation in the ROS formation and intracellular GSH (ICG) depletion in melanocytic human SK-MEL-28 cells which express functional tyrosinase. In contrast, CAPE did not lead to ROS formation and ICG depletion in amelanotic C32 melanoma cells, which do not express functional tyrosinase. These findings suggest that tyrosinase plays a major role in CAPE's selective toxicity towards melanocytic melanoma cell lines. Our findings suggest that the mechanisms of CAPE toxicity in SK-MEL-28 melanoma cells mediated by tyrosinase bioactivation of CAPE included quinone formation, ROS formation, intracellular GSH depletion and induced mitochondrial toxicity.

    Topics: Animals; Apoptosis; Ascorbic Acid; Caffeic Acids; Cell Line, Tumor; Glutathione; Male; Melanoma, Experimental; Monophenol Monooxygenase; NAD; Phenylethyl Alcohol; Rats; Rats, Sprague-Dawley; Spectrophotometry, Ultraviolet

2010
Attenuation of oxidative stress in plasma and tissues of rats with experimentally induced hyperthyroidism by caffeic acid phenylethyl ester.
    Basic & clinical pharmacology & toxicology, 2007, Volume: 100, Issue:2

    Increased oxidative stress with high free radical generation has been described previously in animal models of hyperthyroidism. The present study was designed to investigate the protective effects of caffeic acid phenylethyl ester (CAPE) on oxidative damage in rats with experimentally induced hyperthyroidism. The study was conducted on 32 male Sprague-Dawley rats. The experimental animals were divided into four groups (control, CAPE alone, hyperthyroidism, and hyperthyroidism + CAPE). Hyperthyroidism was induced by intraperitoneal administration of 0.3 mg/kg/day L-thyroxine for 4 weeks. CAPE (10 micro g/kg) was administered intraperitoneally for 4 weeks. At the end of the experimental period, blood samples and various organs (liver, heart and brain) of rats were taken for the determination of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), oxidized glutathione, vitamin C and superoxide dismutase (SOD) levels and concentrations of triiodothyronine (T3), thyroxine (T4) and thyroxine-stimulating hormone (TSH). Our results indicate that TBARS, oxidized glutathione, SOD levels and concentrations of T3 and T4 were higher in plasma and tissues of the hyperthyroid group compared to controls. Vitamin C, GSH and TSH levels were decreased significantly in the hyperthyroid group when compared to the control group. CAPE treatment decreased the elevated TBARS, SOD, T3 and T4 levels and increased the lowered GSH, vitamin C and TSH levels to control levels in rats with hyperthyroidism. In conclusion, our results indicate that CAPE is beneficial as a protective agent against oxidative stress induced by hyperthyroidism in rats. The protection is probably due to multiple mechanisms involving free radical scavenger properties, attenuating lipid peroxidation and increasing the antioxidant status.

    Topics: Animals; Antioxidants; Ascorbic Acid; Brain; Caffeic Acids; Glutathione; Glutathione Disulfide; Hyperthyroidism; Liver; Male; Myocardium; Oxidative Stress; Phenylethyl Alcohol; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances; Thyrotropin; Thyroxine; Triiodothyronine

2007
Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats.
    Basic & clinical pharmacology & toxicology, 2007, Volume: 100, Issue:5

    The objective of this study was to compare the beneficial effects of caffeic acid phenethyl ester (CAPE), vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity. Thirty rats were randomly devided into six groups: (i) control; (ii) vancomycin, 200 mg/kg administrated via intraperitoneal route; (iii) vancomycin plus CAPE-vancomycin with 10 micromol/kg CAPE; (iv) vancomycin plus vitamin C-vancomycin (intraperitoneally) with 200 mg/dl vitamin C in drinking water; (v) vancomycin plus vitamin E-vancomycin with 1000 mg/kg body weight vitamin E (intramuscularly); and (vi) vancomycin plus N-acetylcysteine-vancomycin with 10 mg/kg body weight (intraperitoneally) of N-acetylcysteine. Vancomycin treatments were started 1 day after the first administrations of these agents and continued for 7 days. At the end of the experiments, catalase activity was significantly decreased by vancomycin in kidney homogenates (P < 0.05). Vitamin E, vitamin C, N-acetylcysteine and CAPE administrations decreased the blood urea nitrogen levels increased by vancomycin, although significant differences were detected only in the vitamins E and C groups (P < 0.05). Increased renal malondialdehyde and nitric oxide levels by vancomycin were significantly suppressed by agents used in the study (P < 0.05). Histopathological examination demonstrated prominent damages in the vancomycin-treated group. Vitamin E was the most beneficial agent on vancomycin-induced tubular damage, followed by vitamin C, N-acetylcysteine and CAPE treatments, respectively. The data suggest that vitamin E, as well as vitamin C, N-acetylcysteine and CAPE, could be useful for reducing the detrimental effects on vancomycin-induced toxicity in kidneys.

    Topics: Acetylcysteine; Animals; Anti-Bacterial Agents; Antioxidants; Ascorbic Acid; Blood Urea Nitrogen; Caffeic Acids; Catalase; Disease Models, Animal; Drinking; Drug Combinations; Injections, Intramuscular; Injections, Intraperitoneal; Kidney; Kidney Diseases; Male; Phenylethyl Alcohol; Rats; Rats, Wistar; Vancomycin; Vitamin E; Water Supply

2007
Antibacterial and free-radical scavenging activities of Sonoran propolis.
    Journal of applied microbiology, 2007, Volume: 103, Issue:5

    To evaluate the antibacterial and free-radical scavenging (FRS) activities of propolis collected from three different areas of Sonoran Desert in northwestern Mexico [Pueblo de Alamos (PAP), Ures (UP) and Caborca (CP)].. The antibacterial and FRS activities of Sonoran propolis were determined by the broth microdilution method and the DPPH (1,1-diphenyl-2-picrylhydracyl) assay, respectively. Propolis samples had antibacterial activity against only Gram-positive bacteria. The UP sample showed the highest antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) 100 microg ml(-1)] in a concentration-dependent manner (UP > CP > PAP). Caffeic acid phenethyl ester (CAPE), a UP propolis constituent, had very high growth-inhibitory activity towards Gram-positive bacteria, particularly against S. aureus (MIC 0.1 mmol l(-1)). To our knowledge, this is the first study showing a strong antibacterial activity of CAPE against S. aureus. Additionally, propolis CP exhibited high FRS activity (86% +/- 0.3 at 100 microg ml(-1)) comparable with those of the reference antioxidants vitamin C (87.4% +/- 1.7 at 70 micromol l(-1)) and BHT (66.07% +/- 0.76 at 140 micromol l(-1)). The propolis compounds CAPE and rutin showed high FRS activity (90.4% +/- 0.2 and 88.5% +/- 0.8 at 70 micromol l(-1), respectively).. Sonoran propolis UP and CAPE had strong antibacterial activity against S. aureus. In addition, propolis CP showed potent FRS activity comparable with those of vitamin C and BHT.. The strong antibacterial and antioxidant properties of Sonoran propolis and some of its constituents support further studies on the clinical applications of this natural bee product against S. aureus and several oxidative damage-related diseases.

    Topics: Animals; Anti-Bacterial Agents; Antioxidants; Ascorbic Acid; Bees; Butylated Hydroxytoluene; Caffeic Acids; Flavones; Flavonols; Food Microbiology; Free Radical Scavengers; Gram-Positive Bacteria; Mexico; Microbial Sensitivity Tests; Phenols; Phenylethyl Alcohol; Propolis; Rutin; Staphylococcus aureus; Vitamins

2007