ascorbic-acid has been researched along with boron-nitride* in 4 studies
4 other study(ies) available for ascorbic-acid and boron-nitride
Article | Year |
---|---|
Fundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles study.
Selectivity of dopamine (DA), uric acid (UA), and ascorbic acid (AA) is an open challenge of electrochemical sensors in the field of biosensing. In this study, two selective mechanisms for detecting DA, UA, and AA biomolecules on the pristine boron nitride nanosheets (BNNS) and functionalized BNNS with tryptophan (Trp), i.e., Trp@BNNS have been illustrated through density functional density (DFT) calculation and charge population analysis. Our findings reveal that the adsorbed biomolecules on Trp@BNNS indicate the less sensitivity factor of biomolecule separation than the functionalized biomolecules with Trp (Trp@biomolecule) adsorbed on pristine BNNS. From the calculations, strong adsorption of Trp@biomolecule on the pristine substrate corresponds to enhancing of electron charge transfer and electrical dipole moment. Our analysis is in good agreement with the previous theoretical and experimental results and suggests new pathway for electrode modification for electrochemical biosensing. Topics: Ascorbic Acid; Boron Compounds; Dopamine; Electrochemical Techniques; Electrodes; Tryptophan; Uric Acid | 2022 |
On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy.
Compared with photon-induced binary cancer therapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), boron neutron capture therapy (BNCT) emerges as an alternative noninvasive treatment strategy that could overcome the shallow penetration of light. One key factor in performing successful BNCT is to accumulate a sufficient amount of B-10 (>20 ppm) within tumor cells, which has been a long-standing challenge for small-molecule-based boron drugs. Boron nitride nanoparticles (BNNPs) are promising boron carriers due to their high boron content and good biocompatibility, as certain types of BNNPs can undergo rapid degradation under physiological conditions. To design an on-demand degradable boron carrier, BNNPs were coated by a phase-transitioned lysozyme (PTL) that protects BNNPs from hydrolysis during blood circulation and can be readily removed by vitamin C after neutron capture therapy. According to PET imaging, the coated BNNPs exhibited high tumor boron accumulation while maintaining a good tumor to nontumor ratio. Tail-vein injections of vitamin C were followed by neutron irradiation, and BNNPs were found to be rapidly cleared from major organs according to Topics: Animals; Ascorbic Acid; Boron Compounds; Boron Neutron Capture Therapy; Cell Line, Tumor; Copper Radioisotopes; Endocytosis; Female; Humans; Mice, Inbred BALB C; Muramidase; Nanoparticles; Positron-Emission Tomography; Tissue Distribution; Triple Negative Breast Neoplasms | 2019 |
Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities.
Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) nanosheets are explored as a potential electrochemical sensing platform and evaluated towards the electroanalytical sensing of dopamine (DA) in the presence of the common interferents, ascorbic acid (AA) and uric acid (UA). Surfactant exfoliated 2D-hBN nanosheets (2-4 layers) fabricated using sodium cholate in aqueous media are electrically wired via a drop-casting modification process onto disposable screen-printed graphite electrodes (SPEs). We critically evaluate the performance of these 2D-hBN modified SPEs and demonstrate the effect of 'mass coverage' towards the detection of DA, AA and UA. Previous studies utilising surfactant-free (pristine) 2D-hBN modified SPEs have shown a beneficial effect towards the detection of DA, AA and UA when compared to the underlying/unmodified graphite-based electrode. We show that the fabrication route utilised to prepare 2D-hBN is a vital experimental consideration, such that the beneficial effect previously reported is considerably reduced when surfactant exfoliated 2D-hBN is utilised. We demonstrate for the first time, through implementation of control experiments in the form of surfactant modified graphite electrodes, that sodium cholate is a major contributing factor to the aforementioned detrimental behaviour. The significance here is not in the material per se, but the fundamental knowledge of the surfactant and surface coverage changing the electrochemical properties of the material under investigation. Given the wide variety of ionic and non-ionic surfactants that are utilised in the manufacture of novel 2D materials, the control experiments reported herein need to be performed in order to de-convolute the electrochemical response and effectively evaluate the 'underlying surface/surfactant/2D materials' electrocatalytic contribution. Topics: Ascorbic Acid; Boron Compounds; Dopamine; Electrochemical Techniques; Electrodes; Graphite; Surface-Active Agents; Uric Acid | 2017 |
2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.
Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a significant increase in the peak current of DA. The limit of detection (3σ) is found to correspond to 0.65 μM for DA in the presence of UA. However, it is not possible to deconvolute the simultaneous detection of DA and AA. The observed electrocatalytic effect at 2D-hBN has not previously been reported in the literature when supported upon carbon or any other electrode. We provide valuable insights into the modifier-substrate interactions of this material, essential for those designing, fabricating, and c Topics: Ascorbic Acid; Boron Compounds; Dopamine; Electrochemical Techniques; Particle Size; Surface Properties | 2016 |