ascorbic-acid has been researched along with aluminum-sulfate* in 4 studies
4 other study(ies) available for ascorbic-acid and aluminum-sulfate
Article | Year |
---|---|
Variable bright-darkfield-contrast, a new illumination technique for improved visualizations of complex structured transparent specimens.
Variable bright-darkfield contrast (VBDC) is a new technique in light microscopy which promises significant improvements in imaging of transparent colorless specimens especially when characterized by a high regional thickness and a complex three-dimensional architecture. By a particular light pathway, two brightfield- and darkfield-like partial images are simultaneously superimposed so that the brightfield-like absorption image based on the principal zeroth order maximum interferes with the darkfield-like reflection image which is based on the secondary maxima. The background brightness and character of the resulting image can be continuously modulated from a brightfield-dominated to a darkfield-dominated appearance. When the weighting of the dark- and brightfield components is balanced, medium background brightness will result showing the specimen in a phase- or interference contrast-like manner. Specimens can either be illuminated axially/concentrically or obliquely/eccentrically. In oblique illumination, the angle of incidence and grade of eccentricity can be continuously changed. The condenser aperture diaphragm can be used for improvements of the image quality in the same manner as usual in standard brightfield illumination. By this means, the illumination can be optimally adjusted to the specific properties of the specimen. In VBDC, the image contrast is higher than in normal brightfield illumination, blooming and scattering are lower than in standard darkfield examinations, and any haloing is significantly reduced or absent. Although axial resolution and depth of field are higher than in concurrent standard techniques, the lateral resolution is not visibly reduced. Three dimensional structures, reliefs and fine textures can be perceived in superior clarity. Topics: Alum Compounds; Ascorbic Acid; Bacillus; Diatoms; Equipment Design; Foraminifera; Microscopy; Models, Theoretical | 2012 |
Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress.
The involvement of the ascorbate (AsA) system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress was studied. The treatment of 5-day-old pumpkin seedlings with 50 microM aluminium sulphate resulted in approximately 60% inhibition of root growth within 48-60 h of treatment, while aluminium accumulated in the roots reaching a maximum within 48h. During the same period, the hydrogen peroxide content of the roots was strongly enhanced. The increased level of hydrogen peroxide was matched by both increased ascorbate peroxidase (APX) (EC 1.11.1.11) activity and ascorbate free radical reductase (AFRR) (EC 1.1.5.4) activity, while dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) did not change. The levels of AsA in the roots were also increased by the Al treatment. It was concluded that an oxidative burst is probably involved in the toxicity of Al in pumpkin roots and that plants react to the enhanced production of reactive oxygen species by expressing higher levels of scavenging systems such as the AsA-APX system. Topics: Alum Compounds; Ascorbic Acid; Cucurbita; Free Radical Scavengers; Hydrogen Peroxide; Oxidative Stress; Plant Roots; Seedlings; Time Factors | 2005 |
The stabilization of ferrous iron by a toxic beta-amyloid fragment and by an aluminum salt.
Aluminum is a recognized neurotoxin in dialysis encephalopathy and may also be implicated in the etiology of neurodegenerative disease, particularly Alzheimer's disease. Alzheimer's disease is suspected to be associated with oxidative stress, possibly due to the pro-oxidant properties of beta-amyloid present in the senile plaques. The underlying mechanism by which this occurs is not well understood although interactions between amyloid and iron have been proposed. The presence of low molecular weight iron compounds can stimulate free radical production in the brain. This study provides a possible explanation whereby both aluminum and beta-amyloid can potentiate free radical formation by stabilizing iron in its more damaging ferrous (Fe2+) form which can promote the Fenton reaction. The velocity, at which Fe2+ is spontaneously oxidized to Fe3+ at 37 degrees C in 20 mM Bis-Tris buffer at pH 5.8, was significantly slowed in the presence of aluminum salts. A parallel effect of prolongation of stability of soluble ferrous ion, was found in the presence of beta-amyloid fragment (25-35). Ascorbic acid, known to potentiate the pro-oxidant properties of iron, was also capable of markedly stabilizing ferrous ions. Topics: Alum Compounds; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Ascorbic Acid; Brain Chemistry; Ferrous Compounds; Humans; Peptide Fragments | 1999 |
Relative efficiency of Phyllanthus emblica fruit extract and ascorbic acid in modifying lead and aluminium-induced sister-chromatid exchanges in mouse bone marrow.
The identification of desmutagens and bioantimutagens in plants has prompted the search for additional plant extracts capable of modifying adverse cellular effects of environmental toxicants. The protective action of crude extracts of Phyllanthus emblica fruits (PFE) against lead (Pb) and aluminium (Al)-induced sister chromatid exchanges (SCEs) was studied in bone marrow cells of Mus musculus. The modifying effect of the crude extract was compared with that of comparable amounts of synthetic ascorbic acid (AA), a major component of the fruits. Oral administration of PFE or AA for 7 consecutive days before exposure of mice to the metals by intraperitoneal injections reduced the frequencies of SCEs induced by both metals. PFE afforded a more pronounced protective effect than AA in counteracting the genotoxicity induced by both Al and Pb: This difference was significant with Pb. The higher protection afforded by PFE may be attributed to the interaction of AA with other natural ingredients present in the crude fruit extract. Topics: Alum Compounds; Analysis of Variance; Animals; Antimutagenic Agents; Ascorbic Acid; Bone Marrow; Bone Marrow Cells; Dose-Response Relationship, Drug; Fruit; Lead; Male; Metals; Mice; Mutagens; Nitrates; Plant Extracts; Plants, Medicinal; Sister Chromatid Exchange | 1993 |