ascorbic-acid has been researched along with 6-anilino-5-8-quinolinedione* in 5 studies
5 other study(ies) available for ascorbic-acid and 6-anilino-5-8-quinolinedione
Article | Year |
---|---|
Comparative study of the quercetin, ascorbic acid, glutathione and superoxide dismutase for nitric oxide protecting effects in mouse gastric fundus.
The aim of this work was to compare the preventing capacity of quercetin with Cu/Zn superoxide dismutase (Cu/Zn SOD), ascorbic acid and glutathione on nitric oxide (NO)-induced relaxation in mouse gastric fundus. Furthermore, the effects of the quercetin on the tissue level of total oxidant and antioxidant was investigated. Nitrergic stimulation (4Hz, 25V, 0.1 ms, 10s-train) and exogenous NO (10 μM) induced relaxation. Pyrogallol (10 μM), hydroquinone (100 μM) and LY83583 (6-Anilino-quinolin-5,8-quinone, 5 μM) inhibited nitrergic relaxations. The inhibition observed with pyrogallol, hydroquinone and LY83583 was prevented by quercetin (0.1 μM). Also, ascorbic acid (500 μM), glutathione (100 μM) and Cu/Zn SOD (100 U/ml) prevented the inhibitory effect of superoxide anion generators on the relaxation to nitrergic stimulation and NO. Diethyldithiocarbamic acid (DETCA; 8mM) inhibited nitrergic relaxations. DETCA-induced inhibition on nitrergic stimulation and NO-induced relaxation was prevented by quercetin, ascorbic acid, glutathione or Cu/Zn SOD. DETCA plus pyrogallol, hydroquinone or LY83583 strengthened the inhibition on the relaxations. Also, pre-treatment with quercetin, ascorbic acid and glutathione prevented the inhibitory effect of DETCA plus LY-83583 on the relaxation to nitrergic stimulation and NO but Cu/Zn SOD did not prevent this inhibition. Also, quercetin increased tissue total antioxidant capacity and decreased tissue oxidant level and oxidative stress index in DETCA-treatment group. These results indicate that quercetin has antioxidant effect and protects NO from endogenous superoxide anion-driven inactivation and enhances its biological activity, suggesting that quercetin may scavenge superoxide anion in a Cu/Zn SOD, glutathione or ascorbic acid-inhibitable manner. Topics: Aminoquinolines; Animals; Antioxidants; Ascorbic Acid; Ditiocarb; Female; Gastric Fundus; Glutathione; In Vitro Techniques; Isoproterenol; Male; Mice; Muscle Relaxation; Nitric Oxide; Oxidants; Oxidative Stress; Pyrogallol; Quercetin; Superoxide Dismutase | 2013 |
Inhibition of stimulated ascorbic acid and luteinizing hormone-releasing hormone release by nitric oxide synthase or guanyl cyclase inhibitors.
Ascorbic acid (AA), an antioxidant, is present in high concentrations in the hypothalamus. Previously, we have shown that AA inhibited stimulated release of luteinizing hormone-releasing hormone (LHRH) from medial basal hypothalami in vitro. We have also demonstrated that cell membrane depolarization by high [K(+)] media-induced AA release that is blocked by N(G)-mono-methyl-L-arginine, a competitive inhibitor of nitric oxide synthase (NOS), indicating that the release process is mediated by NO. The release of LHRH is also mediated by NO. We hypothesized that AA is a co-transmitter released with classical transmitters from synaptic vesicles that acts to reduce chemically the NO formed, thereby providing feed-forward inhibitory control over LHRH release. Because NO acts by activating guanylyl cyclase (GC) resulting in production of cGMP, in the present investigation we studied the effects of an NOS inhibitor LY 83583 and GC inhibitor, O.D.Q. to further characterize the role of NO in high [K(+)]-induced AA and LHRH release. Medial basal hypothalami were incubated in 0.5 ml of Krebs-Ringer Bicarbonate buffer or medium containing increased potassium [K(+) = 56 mM] for 1 hr or combinations of high [K(+)] + LY 83583 or O.D.Q. for 1 hr. AA and LHRH released into the incubation medium were measured by high-pressure liquid chromatography and radioimmunoassay, respectively. Cell membrane depolarization with high [K(+)] produced a significant increase in both AA and LHRH release. A combination of high [K(+)] + LY 83583 or high [K(+)] + O.D.Q. decreased basal AA and completely blocked high [K(+)]-induced AA and LHRH release. As in the case of high [K(+)], LHRH release induced by the excitatory amino acid N-methyl-D-aspartic acid (NMDA) was blocked by both the inhibitors. NMDA alone failed to alter AA release, but the combined presence of NMDA and the inhibitors totally blocked AA release. Because LY 83583 and O.D.Q. were shown to inhibit NOS and soluble GC, respectively, the data demonstrate that basal and high [K(+)]-induced AA and high [K(+)] and NMDA-stimulated LHRH release were mediated by NO by its activation of GC and consequent generation of cGMP. Topics: Aminoquinolines; Animals; Ascorbic Acid; Drug Synergism; Enzyme Inhibitors; Gonadotropin-Releasing Hormone; Guanylate Cyclase; Male; N-Methylaspartate; Nitric Oxide Synthase; Potassium; Radioimmunoassay; Rats; Rats, Sprague-Dawley | 2004 |
Inhibition of melatonin-induced ascorbic acid and LHRH release by a nitric oxide synthase and cyclic GMP inhibitor.
Melatonin (MEL), the principle secretory product of the pineal gland, has been shown to function as an antioxidant and free-radical scavenger. We previously showed that the release of ascorbic acid (AA) and luteinizing hormone releasing hormone (LHRH) from medial basal hypothalamus (MBH) was mediated by nitric oxide (NO) that released cyclic guanosine 3'5'-mono-phosphate (cGMP). Therefore, it was of interest to evaluate the effect of MEL on AA and LHRH release and study the effect of a nitric oxide synthase (NOS) inhibitor, 6-anilino-5,8-quinoline-dione (LY 83583), and a guanylyl cyclase (GC) inhibitor, 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (O.D.Q.), on the release process. Because NO has been shown to activate soluble guanylyl cyclase that elicited an elevation of cGMP in target cells, in the current investigation LY 83583, O.D.Q., or N(G)-monomethyl-l-arginine (NMMA), a competitive inhibitor of NOS, were used to evaluate their effects on MEL-induced AA and LHRH release. Medial basal hypothalami were incubated in 0.5 ml of Krebs-Ringer bicarbonate (KRB) buffer for 1 hr. Subsequently, the tissues were incubated with graded concentrations of MEL (10(-8) to 10(-4) M), MEL + NMMA (3 x 10(-4) M), MEL + LY 83583 (10(-6) M), or MEL + O.D.Q. (10(-5) M) for 1 hr. Ascorbic acid and LHRH released into the medium were measured by high-performance liquid chromatography (HPLC) and radio-immunoassay (RIA), respectively. Melatonin (10(-6) and 10(-5) M) significantly stimulated both AA and LHRH release, but the lower and the highest concentrations were ineffective. A combination of MEL + NMMA completely blocked both AA and LHRH release, supporting a role for NO in the releasing action. Both LY 83583 and O.D.Q. significantly suppressed MEL-induced AA and LHRH release, emphasizing the role of NOS, GC, and cGMP in mediating the action of MEL. The data of these in vitro experiments support a role for MEL in the hypothalamic control of AA and LHRH release. Topics: Aminoquinolines; Animals; Ascorbic Acid; Cyclic GMP; Enzyme Inhibitors; Gonadotropin-Releasing Hormone; Guanylate Cyclase; Male; Melatonin; Nitric Oxide Synthase; omega-N-Methylarginine; Rats; Rats, Sprague-Dawley | 2004 |
17beta-estradiol stimulates ascorbic acid and LHRH release from the medial basal hypothalamus in adult male rats.
In the present investigation, 17beta-estradiol (E(2)) and tamoxifen, an antiestrogen, were evaluated for their effects on the release of ascorbic acid (AA) and luteinizing hormone-releasing hormone (LHRH). Medial basal hypothalami (MBH) from adult male rats were incubated with graded concentrations of E(2) (10 (-9) to 10(-6) M) or a combination of E(2) (10(-7) M) and tamoxifen (10(-7) and 10(-6) M ) in 0.5 ml of Krebs Ringer bicarbonate buffer for 1 hr. AA and LHRH in the incubation medium were measured by high-performance liquid chromatography and radioimmunoassay, respectively. E(2) significantly elevated both AA and LHRH release and the minimal effective dose was 10(-7) M. A combination of E(2) (10(-7) M) and tamoxifen (10(-6) M) totally blocked E(2)-induced AA and LHRH release. The stimulatory effect of E(2) was also suppressed in the presence of N(G)-monomethyl-L-arginine, a competitive inhibitor of nitric oxide synthase (NOS), illustrating that the release is mediated by nitric oxide (NO). To further characterize the role of NO, the tissues were incubated with E(2) or a combination of E(2) + (6 anilino-5, 8-quinolinedione) LY 83583 (10(-6) and 10(-5) M), an inhibitor of NOS. LY 83583 was effective in suppressing E(2)-induced AA and LHRH release, demonstrating that the effect was mediated by cyclic GMP. Incubation of the tissues with E(2) or a combination of E(2) + 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (O.D.Q.) (10(-5) and 10(-4) M), a specific inhibitor of soluble guanylyl cyclase failed to alter AA release but significantly suppressed LHRH release. The role of a prostaglandin synthesis blocker in E(2)-induced AA and LHRH release was tested by incubating the tissues with E(2) or a combination of E(2) + indomethacin (1.8 x 10 (-7) or 1.8 x 10(-6) M). Indomethacin produced a significant decrease in E(2)-induced AA and LHRH release, suggesting that the release process required prostaglandins as an intracellular mediator. In conclusion, E(2) stimulated both AA and LHRH release and the effect was mediated by NO and prostaglandins. Topics: Aminoquinolines; Animals; Ascorbic Acid; Cyclic GMP; Estradiol; Gonadotropin-Releasing Hormone; Hypothalamus, Middle; Indomethacin; Male; Nitric Oxide; Prostaglandins; Rats; Rats, Sprague-Dawley; Tamoxifen | 2004 |
Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson's disease.
Nitric oxide (NO) exerts neurotrophic and neurotoxic effects on dopamine (DA) function in primary midbrain cultures. We investigate herein the role of glutathione (GSH) homeostasis in the neurotrophic effects of NO. Fetal midbrain cultures were pretreated with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), 24 h before the addition of NO donors (diethylamine/nitric oxide-complexed sodium and S-nitroso-N-acetylpenicillamine) at doses tested previously as neurotrophic. Under these conditions, the neurotrophic effects of NO disappeared and turned on highly toxic. Reduction of GSH levels to 50% of baseline induced cell death in response to neurotrophic doses of NO. Soluble guanylate cyclase (sGC) and cyclic GMP-dependent protein kinase (PKG) inhibitors protected from cell death for up to 10 h after NO addition; the antioxidant ascorbic acid also protected from cell death but its efficacy decreased when it was added after NO treatment (40% protection 2 h after NO addition). The pattern of cell death was characterized by an increase in chromatin condensed cells with no DNA fragmentation and with breakdown of plasmatic membrane. The inhibition of RNA and protein synthesis and of caspase activity also protected from cell death. This study shows that alterations in GSH levels change the neurotrophic effects of NO in midbrain cultures into neurotoxic. Under these conditions, NO triggers a programmed cell death with markers of both apoptosis and necrosis characterized by an early step of free radicals production followed by a late requirement for signalling on the sGC/cGMP/PKG pathway. Topics: Alkaloids; Aminoquinolines; Animals; Antioxidants; Apoptosis; Ascorbic Acid; Buthionine Sulfoximine; Carbazoles; Cell Division; Cells, Cultured; Cyclic GMP-Dependent Protein Kinases; Dopamine; Enzyme Inhibitors; Free Radicals; Glutathione; Glutathione Synthase; Guanylate Cyclase; Homeostasis; Hydrazines; Indoles; Mesencephalon; Methylene Blue; Nerve Tissue Proteins; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Nucleic Acid Synthesis Inhibitors; Parkinson Disease; Penicillamine; Protein Synthesis Inhibitors; Rats; Rats, Sprague-Dawley; Tyrosine 3-Monooxygenase | 2001 |