ascorbic-acid has been researched along with 5-methyldeoxycytidine* in 2 studies
2 other study(ies) available for ascorbic-acid and 5-methyldeoxycytidine
Article | Year |
---|---|
Quantification of oxidative single-base and intrastrand cross-link lesions in unmethylated and CpG-methylated DNA induced by Fenton-type reagents.
Methylation of cytosine at CpG sites in mammalian cells plays an important role in the epigenetic regulation of gene expression. Here, we assessed the formation of single-nucleobase lesions and intrastrand cross-link lesions (i.e. G[8-5]C, C[5-8]G, mC[5m-8]G, and G[8-5m]mC, where 'mC' represents 5-methylcytosine) in unmethylated and the corresponding CpG-methylated synthetic double-stranded DNA upon treatment with Fenton-type reagents [i.e. H2O2, ascorbate together with Cu(II) or Fe(II)]. Our results showed that the yields of oxidative single-nucleobase lesions were considerably higher than those of the intrastrand cross-link lesions. Although no significant differences were found for the yields of single-base lesions induced from cytosine and mC, the G[8-5m]mC cross-link was induced approximately 10 times more efficiently than the G[8-5]C cross-link. In addition, the mC[5m-8]G was induced at a level that was approximately 15 times less than G[8-5m]mC, whereas the corresponding C[5-8]G intrastrand cross-link lesion was not detectable. Moreover, Cu(II) is approximately 10-fold as effective as Fe(II) in inducing oxidative DNA lesions. These results suggest that oxidative intrastrand cross-link lesions formed at methylated-CpG sites may account for the previously reported mCG-->TT tandem double mutations induced by Fenton-type reagents. Topics: Ascorbic Acid; Chromatography, Liquid; Copper; CpG Islands; Deoxycytidine; Dimethyl Sulfoxide; DNA Damage; DNA Methylation; Free Radical Scavengers; Hydrogen Peroxide; Iron; Oligodeoxyribonucleotides; Oxidation-Reduction; Tandem Mass Spectrometry | 2007 |
Formation of 5-formyl-2'-deoxycytidine from 5-methyl-2'-deoxycytidine in duplex DNA by Fenton-type reactions and gamma-irradiation.
5-methyl-2'-deoxycytidine (5-Me-dC) is formed by the enzymatic methylation of dC, primarily in CpG sequences in DNA, and is involved in the regulation of gene expression. In the present study, 5-Me-dC and double-stranded DNA fragments containing 5-Me-dC were either gamma-irradiated or aerobically treated with Fenton-type reagents, Fe(II)-EDTA, Fe(II)-nitrilotriacetic acid, Fe(III)-EDTA-H(2)O(2)-catechol or ascorbic acid-H(2)O(2) under neutral conditions. The formation of 5-formyl-2'-deoxycytidine (5-CHO-dC) was observed upon treatment of both 5-Me-dC and DNA fragments containing 5-Me-dC. The yields of 5-CHO-dC from 5-Me-dC and those of 5-formyl-2'-deoxyuridine from dT were comparable. These results suggest that 5-Me-dC in DNA is as susceptible to oxidation as dT in cells, and raise the possibility that 5-CHO-dC may contribute to the high mutagenic rate observed in CpG sequences in genomic DNA. Topics: Ascorbic Acid; Catechols; CpG Islands; Deoxycytidine; Deoxyribonucleosides; DNA; Edetic Acid; Ferric Compounds; Ferrous Compounds; Gamma Rays; Hydrogen Peroxide; Iron; Oxidation-Reduction | 1999 |