ascorbic-acid and 5-5--6-6--tetrachloro-1-1--3-3--tetraethylbenzimidazolocarbocyanine

ascorbic-acid has been researched along with 5-5--6-6--tetrachloro-1-1--3-3--tetraethylbenzimidazolocarbocyanine* in 2 studies

Other Studies

2 other study(ies) available for ascorbic-acid and 5-5--6-6--tetrachloro-1-1--3-3--tetraethylbenzimidazolocarbocyanine

ArticleYear
Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Apr-18, Volume: 32, Issue:16

    The early antecedents of cerebral palsy (CP) are unknown but are suspected to be due to hypoxia-ischemia (H-I). In our rabbit model of CP, the MRI biomarker, apparent diffusion coefficient (ADC) on diffusion-weighted imaging, predicted which fetuses will develop postnatal hypertonia. Surviving H-I fetuses experience reperfusion-reoxygenation but a subpopulation manifested a continued decline of ADC during early reperfusion-reoxygenation, which possibly represented greater brain injury (RepReOx). We hypothesized that oxidative stress in reperfusion-reoxygenation is a critical trigger for postnatal hypertonia. We investigated whether RepReOx predicted postnatal neurobehavior, indicated oxidative stress, and whether targeting antioxidants at RepReOx ameliorated motor deficits, which included testing of a new superoxide dismutase mimic (MnTnHex-2-PyP). Rabbit dams, 79% gestation (E25), were subjected to 40 min uterine ischemia. Fetal brain ADC was followed during H-I, immediate reperfusion-reoxygenation, and 4-72 h after H-I. Endpoints were postnatal neurological outcome at E32, ADC at end of H-I, ADC nadir during H-I and reperfusion-reoxygenation, and area under ADC curve during the first 20 min of reperfusion-reoxygenation. Antioxidants targeting RepReOx were administered before and/or after uterine ischemia. The new MRI-ADC biomarker for RepReOx improved prediction of postnatal hypertonia. Greater superoxide production, mitochondrial injury, and oligodendroglial loss occurred in fetal brains exhibiting RepReOx than in those without. The antioxidants, MnTnHex-2-PyP and Ascorbate and Trolox combination, significantly decreased postnatal motor deficits and extent of RepReOx. The etiological link between early injury and later motor deficits can thus be investigated by MRI, and allows us to distinguish between critical oxidative stress that causes motor deficits and noncritical oxidative stress that does not.

    Topics: Age Factors; Animals; Animals, Newborn; Antioxidants; Ascorbic Acid; Benzimidazoles; Blood Flow Velocity; Brain; Brain Mapping; Carbocyanines; Chromans; Diffusion Magnetic Resonance Imaging; Disease Models, Animal; Embryo, Mammalian; Female; Flow Cytometry; Hypoxia-Ischemia, Brain; Ionophores; Laser-Doppler Flowmetry; Membrane Potential, Mitochondrial; Metalloporphyrins; Microvessels; Mitochondria; Movement Disorders; Muscle Hypertonia; O Antigens; Pregnancy; Rabbits; Reperfusion Injury; Superoxides; Time Factors; Valinomycin

2012
Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts.
    American journal of physiology. Cell physiology, 2000, Volume: 279, Issue:4

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

    Topics: Adenosine Triphosphate; Alkaline Phosphatase; Animals; Ascorbic Acid; Benzimidazoles; Carbocyanines; Cell Differentiation; Cell Division; Cells, Cultured; Electron Transport Complex IV; Energy Metabolism; Enzyme Inhibitors; Fluorescent Dyes; Glycolysis; Membrane Potentials; Mitochondria; Osteoblasts; Oxidative Phosphorylation; Potassium Cyanide; Rats; Sodium Azide; Sodium Fluoride

2000