ascorbic-acid and 4-hydroxybenzoic-acid

ascorbic-acid has been researched along with 4-hydroxybenzoic-acid* in 2 studies

Other Studies

2 other study(ies) available for ascorbic-acid and 4-hydroxybenzoic-acid

ArticleYear
Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.
    Journal of enzyme inhibition and medicinal chemistry, 2014, Volume: 29, Issue:6

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

    Topics: Antioxidants; Ascorbic Acid; Biphenyl Compounds; Caffeic Acids; Catechin; Catechol Oxidase; Chlorogenic Acid; Coumaric Acids; Enzyme Inhibitors; Fruit; Kinetics; Levodopa; Malus; Oxidation-Reduction; Parabens; Phenylpropionates; Picrates; Plant Extracts; Plant Proteins; Polyphenols; Propionates; Quercetin; Sulfites

2014
Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited.
    Free radical biology & medicine, 1995, Volume: 19, Issue:6

    While setting up an intracerebral microdialysis system to estimate the extent of oxidative stress induced by the neurotoxin, N-methylphenylpyridinium ion (MPP+), we encountered a problem in the use of hydroxybenzoic acids as traps of hydroxyl radicals. Using either 2-hydroxybenzoate (salicylate) or 4-hydroxybenzoate as trapping agents, we observed a nonspecific, that is, nontissue derived, production of hydroxyl radicals as measured by the hydroxylation products, 2,3- and 2,5-dihydroxybenzoate from 2-hydroxybenzoate and 3,4-dihydroxybenzoate from 4-hydroxybenzoate. This production of dihydroxybenzoates was 10 times that expected due to the administration of MPP+, thus making it impossible to interpret our results. Careful investigation of the various components of the microdialysis system indicated that contact of the microdialysate with metal surfaces resulted in dihydroxybenzoic acid formation. These results should serve as a reminder to perform stringent tests of the experimental system prior to experiments with biological tissues to evaluate the contribution of hydroxyl radical production from nonbiological sources. Therefore, along with the possibility of enzymatic production of dihydroxybenzoates, artefactual production by components of the experimental apparatus must be considered before assuming that one is measuring hydroxyl radical production by a biological system.

    Topics: 1-Methyl-4-phenylpyridinium; Animals; Ascorbic Acid; Chromatography, High Pressure Liquid; Dialysis; Free Radical Scavengers; Gas Chromatography-Mass Spectrometry; Hydroxybenzoates; Hydroxyl Radical; Hydroxylation; Male; Oxidation-Reduction; Oxidative Stress; Parabens; Rats; Rats, Sprague-Dawley; Salicylates; Salicylic Acid

1995