ascorbic-acid has been researched along with 4-aminophenol* in 9 studies
9 other study(ies) available for ascorbic-acid and 4-aminophenol
Article | Year |
---|---|
A new approach to elucidating repair reactions of resveratrol.
The repair by co-antioxidants of the phenoxy radical of resveratrol, the famous health-preserving ingredient of red wine, is a key step of radical scavenging cascades in nature. To generate that radical, we employed 355 nm photoionization as a direct and selective access that reduces the chemical complexity and is equally applicable in organized phases; to monitor it, we used its hitherto unreported absorption in the red where no other species in our systems interfere. With this novel approach, we measured rate constants and H/D kinetic isotope effects for the repairs by ascorbate, trolox (a vitamin E analogue) and 4-aminophenol, and identified the mechanisms as one-step hydrogen abstractions. Cysteine and glutathione are unreactive. In micellar solution (SDS), the repair by ascorbate is much slower and involves only the hydrophilic phenoxy moieties protruding from the micelles. The new experimental strategy also led to a reevaluation of extinction coefficients, rate constants and mechanisms. Topics: Aminophenols; Antioxidants; Ascorbic Acid; Chromans; Kinetics; Phenols; Resveratrol; Stilbenes; Wine | 2015 |
A simple synthesis of nitrogen doped porous graphitic carbon: Electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol.
Graphite paste electrode modified with nitrogen doped porous carbon (NDPC) is used for the detections of paracetamol (PCM), ascorbic acid (AA) and p-aminophenol (PAP) at relatively low concentration. NDPC is synthesized by direct carbonization of Zn(OAc)2 incorporated melamine-formaldehyde resin microsphere. The NDPC shows small pore diameters centered at 3.14 nm and 8.12 nm and has a pseudo graphitic structure with reasonable porous matrix. The lower limit of detections (S/N = 3) for PCM, AA, and PAP are found to be 30 nM, 720 nM and 10 nM respectively. Under optimized experimental condition, the linear ranges of determination for PCM and AA are 1-400 μM, 10-2700 μM respectively in mixture. Similarly for PCM and PAP mixture, the linear ranges of determination are found to be 1-90 μM. It is also used for the analysis of urine and pharmaceutical products with better sensitivity. Topics: Acetaminophen; Aminophenols; Ascorbic Acid; Catalysis; Electrochemical Techniques; Electrodes; Graphite; Nitrogen; Oxidation-Reduction; Porosity; Reproducibility of Results; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis, Raman | 2015 |
Time-dependent effect of p-aminophenol (PAP) toxicity in renal slices and development of oxidative stress.
p-Aminophenol (PAP), a metabolite of acetaminophen, is nephrotoxic. This study investigated PAP-mediated changes as a function of time that occur prior to loss of membrane integrity. Experiments further evaluated the development of oxidative stress by PAP. Renal slices from male Fischer 344 (F344) rats (N = 4-6) were exposed to 0.1, 0.25, and 0.5 mM PAP for 15-120 min under oxygen and constant shaking at 37 degrees C. Pyruvate-stimulated gluconeogenesis, adenine nucleotide levels, and total glutathione (GSH) levels were diminished in a concentration- and time-dependent manner prior to detection of a rise in lactate dehydrogenase (LDH) leakage. Glutathione disulfide (GSSG) levels were increased by PAP suggesting the induction of oxidative stress. Western blot analysis confirmed a rise in 4-hydroxynonenal (4-HNE)-adducted proteins in tissues exposed to 0.1 and 0.25 mM PAP for 90 min. The appearance of 4-HNE-adducted proteins at the 0.1 mM concentration of PAP occurred prior to development of increased LDH leakage. Pretreatment with 1 mM glutathione (GSH) for 30 min only partially reduced PAP toxicity as LDH values were less severely depleted relative to tissues not pretreated with GSH. In contrast, pretreatment for 15 min with 2 mM ascorbic acid completely protected against PAP toxicity. Further studies showed that ascorbic acid pretreatment prevented PAP-mediated depletion of GSH. In summary, PAP rapidly depletes GSH and adenine nucleotides and inhibits gluconeogenesis prior to a rise in LDH leakage. PAP induces oxidative stress as indicated by an increase in GSSG and 4-HNE-adducted proteins. Ascorbic acid pretreatment prevents PAP toxicity by maintaining GSH status. Topics: Adenine Nucleotides; Aldehydes; Aminophenols; Animals; Antioxidants; Ascorbic Acid; Gluconeogenesis; Glucose; Glutathione; Glutathione Disulfide; In Vitro Techniques; Kidney; L-Lactate Dehydrogenase; Male; Oxidative Stress; Rats; Rats, Inbred F344 | 2005 |
p-Aminophenol-induced liver toxicity: tentative evidence of a role for acetaminophen.
p-Aminophenol (PAP) is a widely used industrial chemical and a metabolite of analgesics, such as acetaminophen (APAP). It was found recently that PAP, a known nephrotoxicant, could cause acute hepatotoxicity in mice but not in rats. The mechanism of hepatotoxicity is not known. The aim of this study was to investigate the role of N-acetylation of PAP to APAP in PAP-induced toxicity. Male C57BL/6 mice injected intraperitoneally (i.p.) with various doses of PAP were sacrificed at 12 hours for measurement of serum glutamic-pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) levels and determination of the extent of hepatic nonprotein sulfhydryl (NPSH) and glutathione (GSH) depletion. Plasma levels of APAP and its metabolites were measured by HPLC after PAP administration. p-Aminophenol depleted NPSH in a dose- and time-dependent manner. Depletion of NPSH in mouse liver occurred at PAP doses above 400 mg/kg. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, potentiated the PAP-induced hepatotoxicity. Ascorbate, a reducing agent, did not affect PAP-induced hepatotoxicity and NPSH depletion. After PAP treatment, APAP and its sulfate and glucuronide conjugates as well as GSH conjugates (APAP-cysteine and APAP-mercapturate) were detected in the plasma. The results suggest the roles of GSH and N-acetylation of PAP to APAP in PAP-induced hepatotoxicity. Topics: Acetaminophen; Acetylation; Alanine Transaminase; Aminophenols; Animals; Ascorbic Acid; Buthionine Sulfoximine; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Cysteine; Cystine; Dose-Response Relationship, Drug; Drug Synergism; Glutathione; Glutathione Disulfide; L-Iditol 2-Dehydrogenase; Liver; Male; Mice; Mice, Inbred C57BL | 2001 |
The role of glutathione in p-aminophenol-induced nephrotoxicity in the mouse.
p-Aminophenol (PAP) produces nephrotoxicity in rats through a mechanism presumably involving oxidation and conjugation with glutathione (GSH). Recently it was found that PAP also causes nephrotoxicity in mice as evidenced by elevated blood urea nitrogen (BUN) and serum creatinine levels. The objective of this study was to further investigate the mechanism and elucidate the role of GSH in PAP-induced nephrotoxicity in the mouse. Male C57BL/6 mice injected i.p. with various doses of PAP were sacrificed at 12 hr for measurement of BUN and serum creatinine levels and determination of the extent of renal cortical nonprotein sulfhydryl (NPSH) and GSH depletion. PAP depleted renal cortical NPSH content in a dose- and time-dependent manner. Depletion of NPSH in mouse kidney did not occur at PAP doses below 600 mg/kg. Buthionine sulfoximine, an inhibitor of GSH synthesis, decreased nephrotoxicity. Ascorbate, a reducing agent, prevented PAP-induced nephrotoxicity and attenuated renal cortical NPSH depletion. However, acivicin and aminooxyacetic acid, inhibitors of gamma-glutamyltranspeptidase and beta-lyase, respectively, did not prevent toxicity in the mouse. Piperonyl butoxide, an inhibitor of cytochrome P-450 enzymes, enhanced nephrotoxicity and renal cysteine depletion but not GSH depletion. The results suggest that PAP-induced nephrotoxicity in the mouse may involve oxidation and formation of a GSH conjugate. Topics: Aminophenols; Animals; Ascorbic Acid; Buthionine Sulfoximine; Dose-Response Relationship, Drug; Glutathione; Isoxazoles; Kidney; Male; Mice; Mice, Inbred C57BL; Oxidation-Reduction; Piperonyl Butoxide | 1999 |
Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism.
The mechanism of aromatic hydroxylation of aniline and phenol derivatives in a H2O2-driven microperoxidase-8(MP8)-catalyzed reaction was investigated. It was shown that the reaction was not inhibited by the addition of scavengers of superoxide anion or hydroxyl radicals, which demonstrates that the reaction mechanism differs from that of the aromatic hydroxylation catalyzed by a horseradish peroxidase/ dihydroxyfumarate system. Additional experiments with 18O-labelled H2 18O2 demonstrated that the oxygen incorporated into aniline to give 4-aminophenol originates from H2O2. Furthermore, it was found that the addition of ascorbic acid efficiently blocks all peroxidase-type reactions that can be catalyzed by the MP8/H2O2 system, but does not inhibit the aromatic hydroxylation of aniline and phenol derivatives. Together, these observations exclude reaction mechanisms for the aromatic hydroxylation that proceed through peroxidase-type mechanisms in which the oxygen incorporated into the substrate originates from O2 or H2O. The mechanism instead seems to proceed by an initial attack of the high-valent iron-oxo intermediate of MP8 on the pi-electrons of the aromatic ring of the substrate leading to product formation by a cytochrome-P-450-type of sigma-O-addition or oxygen-rebound mechanism. This implies that MP8, which has a histidyl and not a cysteinate fifth axial ligand, is able to react by a cytochrome-P-450-like oxygen-transfer reaction mechanism. Topics: Aminophenols; Aniline Compounds; Animals; Ascorbic Acid; Cytochrome c Group; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Horses; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxyl Radical; Hydroxylation; Kinetics; Magnetic Resonance Spectroscopy; Mitochondria, Heart; Oxygen Isotopes; Peroxidases; Superoxides | 1996 |
Studies on the mechanism of 4-aminophenol-induced toxicity to renal proximal tubules.
4-Aminophenol (PAP) is known to cause nephrotoxicity in the rat where it produces selective necrosis to renal proximal tubules. The aim of this work was to investigate the toxicity of PAP and its known nephrotoxic metabolite 4-amino-3-S-glutathionylphenol using a well defined suspension of rabbit renal proximal tubules. PAP at a concentration of 0.5 mM and 1 mM caused proximal tubule cell death (measured by lactate dehydrogenase release) in a time-dependent manner over a 4-h exposure. In contrast, 4-amino-3-S-glutathionylphenol at 1 mM produced no proximal tubule cell death over a similar 4-h exposure. At 2 h, 1 mM PAP inhibited proximal tubule respiration by 30% and decreased cellular adenosine triphosphate (ATP) levels by 60%. These events preceded cell death. The addition of PAP to proximal tubules led to a rapid depletion of cellular glutathione, exposure to 0.5 mM causing a 50% depletion within 1 h. The cytochrome P-450 inhibitors SKF525A (1 mM) and metyrapone (1 mM), the iron chelator deferoxamine (1 mM) and the antioxidant N,N'-phenyl-1,4-phenylenediamine (2 microM) had no effect on PAP-induced cell death. However ascorbic acid (0.1 mM), afforded a marked protection against the depletion of cellular glutathione and completely protected against the cell death produced by 1 mM-PAP. These results indicate that oxidation of PAP to generate a metabolite that can react with glutathione is an important step in the toxicity, while mitochondria appear to be a critical target for the reactive intermediate formed. Topics: Adenosine Triphosphate; Aminophenols; Animals; Ascorbic Acid; Cell Death; Energy Metabolism; Female; Glutathione; In Vitro Techniques; Kidney Diseases; Kidney Tubules, Proximal; L-Lactate Dehydrogenase; Mitochondria; Nystatin; Oxygen Consumption; Phenols; Rabbits | 1993 |
Effect of ascorbic acid, acivicin and probenecid on the nephrotoxicity of 4-aminophenol in the Fischer 344 rat.
4-Aminophenol (p-aminophenol, PAP) causes selective necrosis to the pars recta of the proximal tubule in Fischer 344 rats. The basis for this selective toxicity is not known but PAP can undergo oxidation in a variety of systems to form the 4-aminophenoxy free radical. Oxidation or disproportionation of this radical will form 1,4-benzoquinoneimine which can covalently bind to cellular macromolecules. We have recently reported that a glutathione conjugate of PAP, 4-amino-3-S-glutathionylphenol, is more toxic to the kidney than the parent compound itself. In this study we have examined the distribution and covalent binding of radiolabel from 4-[ring 3H]-aminophenol in the plasma, kidney and liver of rats 24 h after dosing and related these findings to the extent of nephrotoxicity. In addition, we have examined the effect of ascorbic acid which will slow the oxidation of PAP; acivicin, an inhibitor of gamma-glutamyltransferase and hence the processing of glutathione-derived conjugates; and probenecid, an inhibitor of organic anion transport on the nephrotoxicity produced by PAP. Administration of a single dose of PAP at 458 or 687 mumol kg-1 produced a dose-related alteration in renal function within 24 h which was associated with proximal tubular necrosis. The lesion at the lower dose was restricted to the S3 proximal tubules in the medullary rays, while at the higher dose it additionally affected the S3 tubules in the pars recta region of the cortex.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Aminophenols; Animals; Antimetabolites; Ascorbic Acid; Isoxazoles; Kidney; Kidney Diseases; Kidney Function Tests; Liver; Male; Probenecid; Rats; Rats, Inbred F344 | 1993 |
Electrochemistry and detection of some organic and biological molecules at conducting poly(3-methylthiophene) electrodes.
Electrodes modified by the electrodeposition of poly(3-methylthiophene) were used as chemical sensors for some organic and biological molecules of industrial and medicinal interest. The electrochemical behaviors of ferri/ferrocyanide, catechol, ascorbic acid, hydroquinone, dopamine epinephrine, acetaminophen, p-aminophenol and NADH were examined by cyclic voltammetry. The results showed that the proposed modified surface catalyzes the oxidation of these compounds. Differential pulse and square wave techniques were used for the analysis of binary mixture of ascorbic acid with catechol, NADH, dopamine and p-aminophenol. Voltammetric peak resolution was also demonstrated for a ternary mixture of ascorbic acid, catechol and p-aminophenol. Polymer coated electrode was also used in an amperometric detector for flow injection analysis of most of the aforementioned compounds. The responses of the polymer electrode were 4-10 times larger as compared to those of platinum. The modified electrode displayed excellent response stability for successive injections and detection limits were 10 ppb for catechol, dopamine, epinephrine, NADH and p-aminophenol, 1 ppb for acetaminophen and 100 ppb for ascorbic acid. Voltammetric peak positions were affected by the nature of the electrolyte and its pH. Also, film thicknesses were shown to be a factor affecting both the current magnitudes and oxidation peak potential of NADH. Topics: Acetaminophen; Aminophenols; Ascorbic Acid; Biosensing Techniques; Catechols; Dopamine; Electrochemistry; Epinephrine; Hydroquinones; Iron; NAD; Polymers; Thiophenes | 1991 |