ascorbic-acid and 3-methyladenine

ascorbic-acid has been researched along with 3-methyladenine* in 4 studies

Other Studies

4 other study(ies) available for ascorbic-acid and 3-methyladenine

ArticleYear
Induction of autophagy promotes porcine parthenogenetic embryo development under low oxygen conditions.
    Reproduction, fertility, and development, 2020, Volume: 32, Issue:7

    Autophagy plays an important role in embryo development; however, only limited information is available on how autophagy specifically regulates embryo development, especially under low oxygen culture conditions. In this study we used parthenogenetic activation (PA) of porcine embryos to test the hypothesis that a low oxygen concentration (5%) could promote porcine embryo development by activating autophagy. Immunofluorescence staining revealed that low oxygen tension activated autophagy and alleviated oxidative stress in porcine PA embryos. Development was significantly affected when autophagy was blocked by 3-methyladenine, even under low oxygen culture conditions, with increased reactive oxygen species levels and malondialdehyde content. Furthermore, the decreased expression of pluripotency-associated genes induced by autophagy inhibition could be recovered by treatment with the antioxidant vitamin C. Together, these results demonstrate that low oxygen-induced autophagy regulates embryo development through antioxidant mechanisms in the pig.

    Topics: Adenine; Animals; Antioxidants; Ascorbic Acid; Autophagy; Embryo Culture Techniques; Embryonic Development; Oxidative Stress; Oxygen; Parthenogenesis; Swine

2020
Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease.
    Journal of cellular physiology, 2018, Volume: 233, Issue:12

    The proteolytic autophagy pathway is enhanced in the lower limb muscles of patients with chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) have been shown to regulate autophagy in the skeletal muscles, but the role of oxidative stress in the muscle autophagy of patients with COPD is unknown. We used cultured myoblasts and myotubes from the quadriceps of eight healthy subjects and twelve patients with COPD (FEV1% predicted: 102.0% and 32.0%, respectively; p < 0.0001). We compared the autophagosome formation, the expression of autophagy markers, and the autophagic flux in healthy subjects and the patients with COPD, and we evaluated the effects of the 3-methyladenine (3-MA) autophagy inhibitor on the atrophy of COPD myotubes. Autophagy was also assessed in COPD myotubes treated with an antioxidant molecule, ascorbic acid. Autophagosome formation was increased in COPD myoblasts and myotubes (p = 0.011; p < 0.001), and the LC3 2/LC3 1 ratio (p = 0.002), SQSTM1 mRNA and protein expression (p = 0.023; p = 0.007), BNIP3 expression (p = 0.031), and autophagic flux (p = 0.002) were higher in COPD myoblasts. Inhibition of autophagy with 3-MA increased the COPD myotube diameter (p < 0.001) to a level similar to the diameter of healthy subject myotubes. Treatment of COPD myotubes with ascorbic acid decreased ROS concentration (p < 0.001), ROS-induced protein carbonylation (p = 0.019), the LC3 2/LC3 1 ratio (p = 0.037), the expression of SQSTM1 (p < 0.001) and BNIP3 (p < 0.001), and increased the COPD myotube diameter (p < 0.001). Thus, autophagy signaling is enhanced in cultured COPD muscle cells. Furthermore, the oxidative stress level contributes to the regulation of autophagy, which is involved in the atrophy of COPD myotubes in vitro.

    Topics: Adenine; Aged; Ascorbic Acid; Autophagy; Biomarkers; Cells, Cultured; Female; Humans; Male; Microtubule-Associated Proteins; Middle Aged; Muscle Cells; Muscle Fibers, Skeletal; Muscular Atrophy; Myoblasts; Oxidative Stress; Phagosomes; Pulmonary Disease, Chronic Obstructive

2018
Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway.
    Toxicology and applied pharmacology, 2016, 08-01, Volume: 304

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway.

    Topics: Adenine; Animals; Apoptosis; Ascorbic Acid; Autophagy; Biphenyl Compounds; Caspase 3; Cell Line, Tumor; Dose-Response Relationship, Drug; Down-Regulation; Glioma; Lignans; Mice; Microtubule-Associated Proteins; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; RNA, Small Interfering; Signal Transduction; Sirolimus; Time Factors; TOR Serine-Threonine Kinases; Tumor Suppressor Protein p53

2016
Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress.
    Molecular pharmacology, 1990, Volume: 37, Issue:3

    Pretreatment of cultured hepatocytes with the ferric iron chelator deferoxamine prevents the killing of the cells by tert-butyl hydroperoxide (TBHP). Incubation of the deferoxamine-pretreated hepatocytes in a serum-free medium containing only 0.25 nM iron restored the sensitivity of the cells to TBHP within 4 to 6 hr. An amino acid-free medium accelerated the restoration of sensitivity in parallel with an enhanced rate of degradation of 14C-prelabeled protein. By contrast, inhibitors of the autophagic degradation of protein, including chymostatin, 3-methyladenine, benzyl alcohol, colchicine, oligomycin, and methylamine, inhibited the restoration of sensitivity of deferoxamine-treated hepatocytes to TBHP in parallel with their inhibition of protein degradation. With chymostatin, 3-methyladenine, benzyl alcohol, and colchicine, there was a parallel dose dependency of both the inhibition of protein turnover and the inhibition of the restoration of sensitivity to TBHP. Ascorbic acid, known to specifically retard the autophagic degradation of ferritin, inhibited the restoration of sensitivity to TBHP without effect on the general rate of protein turnover. None of the agents studied had any protective effect on the toxicity of TBHP for hepatocytes that were not pretreated with deferoxamine. These data indicate that the autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by TBHP.

    Topics: Adenine; Amino Acids; Animals; Ascorbic Acid; Autophagy; Benzyl Alcohol; Benzyl Alcohols; Cell Survival; Cells, Cultured; Colchicine; Deferoxamine; Ferric Compounds; Ferritins; Liver; Methylamines; Oligomycins; Oligopeptides; Oxidation-Reduction; Peroxides; Phagocytosis; Proteins; Rats; Rats, Inbred Strains; tert-Butylhydroperoxide

1990