ascorbic-acid has been researched along with 1-methylcyclopropene* in 6 studies
6 other study(ies) available for ascorbic-acid and 1-methylcyclopropene
Article | Year |
---|---|
Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit.
The objective of the present study was to investigate the effectiveness of lysozyme coatings and 1-MCP on storage and preservation of kiwifruit stored at 4 ± 1 °C and 90-95% RH for 20 d. Ethylene production, respiratory rate, decay incidence, weight loss, firmness, chlorophyll, soluble solid, titratable acid, ascorbic acid, total bacterial count, ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) activity of treated kiwifruit were examined. The results showed that lysozyme coatings or 1-MCP treatment inhibited ethylene production and respiratory rate, delayed the increase of decay incidence, weight loss, soluble solid and total bacterial count, improved firmness, chlorophyll, titratable acid, ascorbic acid content, APX, SOD and CAT activity during the storage compared with the untreated kiwifruit in different degree. Moreover, the combined effect of lysozyme coatings and 1-MCP was more excellent than that of lysozyme coatings or 1-MCP alone. In conclusion, our present results indicated that the combined treatment of lysozyme coatings and 1-MCP may be an efficient way to improve the postharvest quality and prolong the shelf life of kiwifruit. Topics: Actinidia; Ascorbate Peroxidases; Ascorbic Acid; Catalase; Chlorophyll; Cyclopropanes; Ethylenes; Food Preservation; Muramidase; Superoxide Dismutase | 2019 |
Metabolic Alterations in Postharvest Pear Fruit As Influenced by 1-Methylcyclopropene and Controlled Atmosphere Storage.
This study assessed the impact of 1-methylcyclopropene (1-MCP) and controlled atmosphere (CA) on the metabolism of targeted amino acids, organic acids, and antioxidants in stored 'AC Harrow Crisp' pears and their relationships to storage disorders. Pears were treated with 0 or 300 nL L Topics: Amino Acids; Antioxidants; Ascorbic Acid; Carbon Dioxide; Citric Acid; Cyclopropanes; Food Preservation; Fruit; Fumarates; Glutathione; Lactic Acid; Oxygen; Plant Growth Regulators; Pyrus | 2018 |
Effects of 1-methylcyclopropene and post-controlled atmosphere air storage treatments on fresh-cut Ambrosia apple slices.
The effect of 1-methylcyclopropene (1-MCP) treatment and two different post-controlled atmosphere air storage (PCAAS) durations on the quality and chemistry of fresh-cut Ambrosia apple slices was studied.. PCAAS for 1 or 2 weeks prior to slicing had an overall positive effect on the resultant quality of fresh-cut apple slices. The most significant responses to PCAAS were the suppression of both phenolic and o-quinone accumulation in slices, and this was related to the significantly lower browning potential values obtained for slices from PCAAS-treated apples. Polyphenol oxidase (PPO), peroxidase (POX) and ascorbate peroxidase (APOX) activities were not affected by 1-MCP or PCAAS treatments. PPO and POX activities were almost completely inhibited by a 50 g L⁻¹ calcium ascorbate anti-browning dip of apple slices from all treatments.. The most dramatic effect of the PCAAS treatments was to reduce the accumulation of soluble phenolics, which is likely the reason that o-quinone accumulation was also inhibited in treated fruits. The consequent reduction in browning potential may be the explanation as to why PCAAS treatment has been shown to reduce fresh apple slice browning in previous work. Topics: Ascorbic Acid; Chemical Phenomena; Cyclopropanes; Enzyme Inhibitors; Fast Foods; Food Packaging; Food Preservatives; Food Quality; Food Storage; Fruit; Maillard Reaction; Malus; Mechanical Phenomena; Phenols; Quinones | 2013 |
Effects of 1-methylcyclopropene and modified atmosphere packaging on the antioxidant capacity in pepper "Kulai" during low-temperature storage.
The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT), were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits. Topics: Antioxidants; Ascorbate Peroxidases; Ascorbic Acid; Atmosphere; Capsicum; Catalase; Cold Temperature; Cyclopropanes; Glutathione; Glutathione Reductase | 2012 |
Changes in quality and biochemical parameters in 'Idared' apples during prolonged shelf life and 1-MCP treatment.
In this study, changes in quality and various biochemical parameters of 'Idared' apples during prolonged shelf life period after ultra-low oxygen (ULO) storage were investigated. Additionally, the impact of the postharvest application of 1-methylcyclopropene (1-MCP) on different parameters was evaluated. After the harvest, apples were stored in the ULO storage for 6 months and then exposed to room temperature. Fruit firmness, peel color, and changes in sugars, organic acids and phenolics were monitored during the 3 weeks of shelf life. Malic acid, sugars and firmness decreased at room temperature. However, the color of the apples remained unchanged. The level of citric and ascorbic acid remained constant. Levels of phenolics in the peel increased significantly, whereas remained constant in the pulp of apples. 1-MCP treatment resulted in higher amounts of fructose and glucose, malic acid and greater firmness of apples. However, 1-MCP did not influence the phenolic content, ascorbic acid or color. The results obtained indicate that the content of different health-promoting compounds of apples does not change dramatically at room temperature. At the same time these results suggest that 1-MCP could be useful for maintaining certain quality and biochemical parameters and might extend the shelf life of apples. Topics: Ascorbic Acid; Chemical Phenomena; Citric Acid; Cyclopropanes; Dietary Carbohydrates; Food Preservatives; Food Quality; Food Storage; Fructose; Fruit; Functional Food; Glucose; Malates; Malus; Mechanical Phenomena; Phenols; Pigmentation; Plant Epidermis; Refrigeration; Slovenia | 2012 |
Effects of postharvest application of 1-MCP and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit.
Consumption of minimally processed fruit and vegetables has increased significantly in the past few years due to the consumers' life style. The aim of this study was to evaluate the effect of treatment with ascorbic acid or calcium chloride on the quality parameters of fresh-cut kiwifruit prepared from fruit previously stored for 3 months, either treated or not treated with 1-methylcyclopropene (1-MCP) before storage. Harvested fruit were treated with 1 microL L(-1) 1-MCP for 20 h at room temperature ( approximately 20 degrees C) (MCP) or had no treatment (C) and were then stored at 0 degrees C. After 3 months, fruit were removed from storage, peeled, and cut longitudinally in quarters, dipped in 2% ascorbic acid (Asc), 2% calcium chloride (Ca), or just water (cont), and kept at 2 degrees C for 8 days. Measurements of firmness, soluble solids content (SSC) ( degrees Brix), color (CIE L*, a*, b*), electrolyte leakage, sugars, organic acids, total phenolics, and antioxidant activity (DPPH and ABTS) were performed at 0, 4, and 8 days. A taste panel was performed on the seventh shelf life day. It was shown that whole MCP-treated kiwifruit kept better than the control through the 3 months storage, this effect being lost through the fresh-cut shelf life period. Furthermore, the postcut dip on 2% CaCl(2) was effective on delaying softening and browning of fresh-cut kiwifruit, which were also the fruit preferred by panelists. Both ascorbic acid and CaCl(2) were effective on preserving or improving nutritional properties (phenolics, ascorbic acid, DPPH, and ABTS) mainly in the first 4 days of shelf life. The CaCl(2) had a further beneficial effect until 8 shelf life days. It is suggested that CaCl(2) is better in keeping overall quality through 8 days of shelf life at 2 degrees C in fresh-cut kiwifruit followed by Asc, and 1-MCP has negligible effect in the conditions of this experiment. Topics: Actinidia; Antioxidants; Ascorbic Acid; Calcium Chloride; Carbohydrates; Carboxylic Acids; Cyclopropanes; Ethylenes; Food Handling; Food Preservation; Fruit; Humans; Nutritive Value; Phenols; Quality Control; Sensation | 2010 |