ascorbic-acid and 1-3-dipropyl-8-cyclopentylxanthine

ascorbic-acid has been researched along with 1-3-dipropyl-8-cyclopentylxanthine* in 3 studies

Other Studies

3 other study(ies) available for ascorbic-acid and 1-3-dipropyl-8-cyclopentylxanthine

ArticleYear
NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury.
    Metabolic brain disease, 2013, Volume: 28, Issue:3

    Ischemic brain injury is a leading cause of sever neurological and neurobehavioral deficits and death. The hippocampus plays vital roles in learning and memory processes and it is impaired by ischemic insults. Cerebral ischemia/reperfusion leads to Oxidative stress damage impairing the hippocampus. Here we tested whether ascorbic acid and adenosine receptor played a neuroprotective role in a mouse brain ischemia model induced by common carotid arteries occlusion. Adult male mice were randomly assigned into nine experimental groups. The animals were subjected to ischemia by the ligation of common carotid arteries for 15 min. Drugs were injected intrapritoneally once daily for 7 days. Behavioral tests performed at day 14 and then mice were killed at day 21 and their brains were fixed for microscopic studies and some samples were prepared for western blot analysis. Western blot analysis utilized to evaluate the expression of apoptosis-related proteinsin the hippocampus. Short-term memory was assessed by shuttle-box test. Our findings revealed that administration of vitamin C and N6-cyclopentyladenosine (CPA) significantly attenuated ischemia-induced brain injury. Vitamin C and CPA administration increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the ischemic mice. Ischemia caused short-term memory loss that was improved by vitamin c and CPA treatment. Our results demonstrate that treatment with vitamin C and adenosine receptor agonist attenuated cerebral ischemia/reperfusion-induced brain injury as a potential neuroprotective agent.

    Topics: Adenosine; Adenosine A1 Receptor Agonists; Adenosine A1 Receptor Antagonists; Animals; Antioxidants; Ascorbic Acid; Avoidance Learning; bcl-2-Associated X Protein; Behavior, Animal; Blotting, Western; CA1 Region, Hippocampal; In Situ Nick-End Labeling; Male; Maze Learning; Memory, Short-Term; Mice; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Receptors, Purinergic P1; Reperfusion Injury; Xanthines

2013
Adenosine modulation of D-[3H]aspartate release in cultured retina cells exposed to oxidative stress.
    Neurochemistry international, 2000, Volume: 36, Issue:3

    In this study we evaluated the role of adenosine receptor activation on the K+-evoked D-[3H]aspartate release in cultured chick retina cells exposed to oxidant conditions. Oxidative stress, induced by ascorbate (3.5 mM)/Fe2+ (100 microM), increased by about fourfold the release of D-[3H]aspartate, evoked by KCl 35 mM in the presence and in the absence of Ca2+. The agonist of A1 adenosine receptors, N6-cyclopentyladenosine (CPA; 10 nM), inhibited the K+-evoked D-[3H]aspartate release in control in oxidized cells. The antagonist of A1 adenosine receptor, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM), potentiated the release of D-[3H]aspartate in oxidized cells, and reverted the effect observed in the presence of CPA 10 nM. However, in oxidized cells, when DPCPX was tested together with CPA 100 nM the total release of D-[3H]aspartate increased from 5.1 +/- 0.4% to 11.4 +/- 1.0%, this increase being reverted by 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), an antagonist of A2A adenosine receptors. In cells of both experimental conditions, the K+-evoked release of D-[3H]aspartate was potentiated by the selective agonist of A2A adenosine receptors, 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680; 10 nM), whereas the antagonist of these receptors, DMPX (100 nM), inhibited the release of D-[3H]aspartate in oxidized cells, but not in control cells. Adenosine deaminase (ADA; 1 U/ml), which is able to remove adenosine from the synaptic space, reduced the K+-evoked D-[3H]aspartate release, from 5.1 +/- 0.4% to 3.1 +/- 0.3% in oxidized cells, and had no significant effect in control cells. The extracellular accumulation of endogenous adenosine, upon K+-depolarization, was higher in oxidized cells than in control cells, and was reduced by the inhibitors of adenosine transporter (NBTI) and of ecto-5'-nucleotidase (AOPCP). This suggests that adenosine accumulation resulted from the outflow of adenosine mediated by the transporter, and from extracellular degradation of adenine nucleotide. Our data show that both inhibitory A1 and excitatory A2A adenosine receptors are present in cultured retina cells, and that the K+-evoked D-[3H]aspartate release is modulated by the balance between inhibitory and excitatory responses. Under oxidative stress conditions, the extracellular accumulation of endogenous adenosine seems to reach levels enough to potentiate the release of D-[3H]aspartate by the tonic activation of A2A adenosine receptors.

    Topics: Adenosine; Adenosine Deaminase; Animals; Ascorbic Acid; Aspartic Acid; Calcium; Cells, Cultured; Chick Embryo; Drug Synergism; Kinetics; Oxidative Stress; Phenethylamines; Potassium; Potassium Chloride; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Receptor, Adenosine A2A; Receptors, Purinergic P1; Retina; Theobromine; Tritium; Xanthines

2000
Ascorbate/Fe(3+)-induced peroxidation and inhibition of the binding of A1 adenosine receptor ligands in rat brain membranes.
    Neurochemistry international, 1995, Volume: 26, Issue:3

    The effect of peroxidation induced by the ascorbate/Fe3+ system on the binding properties of the A1 adenosine receptor, was studied in rat brain membranes, using the agonist, [3H]R-N6-phenylisopropyladenosine ([3H]R-PIA), and the antagonist, [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX). For the agonist, as well as for the antagonist, the number of binding sites (Bmax) was significantly (P < 0.05) reduced after pretreatment of the membranes with ascorbate/Fe3+. The affinity of the agonist for the binding sites was not statistically modified (P > 0.05) after ascorbate/Fe3+ pretreatment, whereas the Kd value of the antagonist was increased (P < 0.05) by a factor of 2. Ascorbate/Fe3+ pretreatment affected agonist binding in the presence of GTP in a similar way as that observed in the absence of GTP, suggesting that peroxidation also affects agonist binding to A1 adenosine receptors uncoupled to G-proteins. The results suggest that when brain membranes suffer free radical oxidative damage, the adenosine modulation of neuronal activity through A1 receptors could be less efficient.

    Topics: Animals; Ascorbic Acid; Binding Sites; Brain; Ferric Compounds; Guanosine Triphosphate; Ligands; Lipid Peroxides; Male; Membranes; Phenylisopropyladenosine; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P1; Xanthines

1995