ascorbate-2-phosphate has been researched along with alpha-tocopherol-phosphate* in 2 studies
2 other study(ies) available for ascorbate-2-phosphate and alpha-tocopherol-phosphate
Article | Year |
---|---|
Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity.
A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-alpha-tocopheryl phosphate (TPNa: 200mg/kg). In contrast, APS (300 mg/kg) and TPNa (200mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed. Topics: alpha-Tocopherol; Animals; Antioxidants; Ascorbic Acid; Central Nervous System Stimulants; Dopamine; Electron Spin Resonance Spectroscopy; Free Radicals; Iron-Binding Proteins; Male; Methamphetamine; Mice; Mice, Inbred BALB C; Molecular Structure; Morphine; Neurotoxicity Syndromes; Self-Injurious Behavior | 2007 |
Comparison of nitric oxide synthase inhibitors, phospholipase A2 inhibitor and free radical scavengers as attenuators of opioid withdrawal syndrome.
Chronic morphine-induced withdrawal syndrome after morphine cessation remains a severe obstacle in the clinical treatment of morphine. Previous studies have shown that nitric oxide synthetase (NOS) inhibitors may have therapeutic potential in morphine withdrawal in humans. The mechanisms that underlie expression of morphine-induced withdrawal syndrome are, however, not yet fully understood. Therefore, this study was designed to determine the mechanism of the expression of morphine-induced withdrawal syndrome in mice. Morphine-dependent mice showed marked body weight loss and several withdrawal signs after naloxone challenge. Pretreatment with a NOS inhibitor, such as N-nitro-L-arginine methyl ester (L-NAME) or 7-nitroindazole, but not aminoguanidine, significantly attenuated the expression of morphine-induced withdrawal syndrome. Furthermore, mepacrine (a phospholipase A2 inhibitor) significantly attenuated the morphine-induced withdrawal syndrome in a manner that was different than that with a NOS inhibitor. These results suggest that nNOS and phospholipase A2, which might increase free radicals, play an important role in the expression of morphine-induced withdrawal syndrome. On the contrary, free radical scavengers (including fullerenes, ascorbate-2-phosphate, and DL-alpha-tocopheryl phosphate) attenuated the expression of the morphine-induced withdrawal syndrome. These results indicate that free radicals play an important role in the expression of physical dependence on morphine, and fullerenes could be a potential clinical tool in the relief of morphine withdrawal syndrome. Topics: alpha-Tocopherol; Animals; Ascorbic Acid; Enzyme Inhibitors; Free Radical Scavengers; Hydroxyl Radical; Male; Mice; Naloxone; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Opioid-Related Disorders; Phospholipase A2 Inhibitors; Substance Withdrawal Syndrome; Superoxides | 2007 |