asbestos--crocidolite has been researched along with 3-nitrotyrosine* in 2 studies
2 other study(ies) available for asbestos--crocidolite and 3-nitrotyrosine
Article | Year |
---|---|
Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase.
Asbestosis is a chronic form of interstitial lung disease characterized by inflammation and fibrosis that results from the inhalation of asbestos fibers. Although the pathogenesis of asbestosis is poorly understood, reactive oxygen species may mediate the progression of this disease. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) can protect the lung against a variety of insults; however, its role in asbestosis is unknown. To determine if EC-SOD plays a direct role in protecting the lung from asbestos-induced injury, intratracheal injections of crocidolite were given to wild-type and ec-sod-null mice. Bronchoalveolar lavage fluid (BALF) from asbestos-treated ec-sod-null mice at 24 h, 14 days, or 28 days posttreatment showed increased inflammation and total BALF protein content compared to that of wild-type mice. In addition, lungs from ec-sod-null mice showed increased hydroxyproline content compared to those of wild-type mice, indicating a greater fibrotic response. Finally, lungs from ec-sod-null mice showed greater oxidative damage, as assessed by nitrotyrosine content compared to those of their wild-type counterparts. These results indicate that depletion of EC-SOD from the lung increases oxidative stress and injury in response to asbestos. Topics: Animals; Asbestos, Crocidolite; Bronchoalveolar Lavage Fluid; Hydroxyproline; Inflammation; Lung; Lung Diseases; Lung Injury; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Superoxide Dismutase; Tyrosine | 2006 |
Early inflammatory response to asbestos exposure in rat and hamster lungs: role of inducible nitric oxide synthase.
Recent studies have suggested that inducible nitric oxide synthase (iNOS) plays a role in the development of asbestos-related pulmonary disorders. The pulmonary reactions of rats and hamsters upon exposure to asbestos fibers are well known to be disparate. In addition, in vitro experiments have indicated that mononuclear phagocytes from hamsters, in contrast to those from rats, lack the iNOS pathway. Therefore, the purpose of this study was to investigate whether rats and hamsters differ in lung iNOS expression in vivo upon exposure to asbestos fibers and whether differences in iNOS induction are associated with differences in the acute pulmonary inflammatory reaction. Body weight, alveolar-arterial oxygen difference, differential cell count in bronchoalveolar lavage fluid, total protein leakage, lung myeloperoxidase activity and lipidperoxidation, wet/dry ratio, iNOS mRNA and protein expression, and nitrotyrosine staining of lung tissue were determined 1 and 7 days after intratracheal instillation of asbestos fibers in CD rats and Syrian golden hamsters. Exposure of rats to asbestos fibers resulted in enhanced pulmonary iNOS expression and nitrotyrosine staining together with an acute inflammation that was characterized by an influx of neutrophils, enhanced myeloperoxidase activity and lipid peroxidation, damage of the alveolar-capillary membrane, edema formation, and impairment of gas exchange. In comparison, instillation of asbestos fibers in hamsters resulted in a significantly milder inflammatory reaction of the lung with no induction of iNOS in pulmonary cells. The data obtained provide important information to understand the underlying mechanisms of species differences in the pulmonary response upon exposure to asbestos fibers. Topics: Animals; Asbestos, Crocidolite; Asbestosis; Body Weight; Bronchoalveolar Lavage Fluid; Cell Count; Cricetinae; Disease Models, Animal; Inhalation Exposure; Intubation, Intratracheal; Lung; Mesocricetus; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxygen; Peroxidase; Rats; RNA, Messenger; Species Specificity; Thiobarbituric Acid Reactive Substances; Tyrosine | 2002 |