arvanil has been researched along with anandamide* in 17 studies
1 review(s) available for arvanil and anandamide
Article | Year |
---|---|
New perspectives on enigmatic vanilloid receptors.
In spite of the rapid advances in our understanding of vanilloid-receptor pharmacology in the PNS, the function of vanilloid receptors in the brain has remained elusive. Recently, the endocannabinoid anandamide has been proposed to function as an endogenous agonist at the vanilloid receptor VR1. This is an exciting hypothesis because the localization of VR1 overlaps with that of anandamide and its preferred cannabinoid receptor CB(1) in various brain areas. The interaction of anandamide and/or related lipid metabolites with these two completely separate receptor systems in the brain clearly places VR1 in a much broader role than pain perception. At a practical level, the overlapping ligand recognition properties of VR1 and CB(1) might be exploited by medicinal chemistry. For example, arvanil, a 'chimeric' ligand that combines structural features of capsaicin and anandamide, promises to be an interesting lead for new drugs that interact at both vanilloid and cannabinoid receptors. Topics: Animals; Arachidonic Acids; Brain Chemistry; Cannabinoid Receptor Modulators; Capsaicin; Diterpenes; Drug Design; Endocannabinoids; Forecasting; Ganglia, Spinal; Glycerides; Humans; Ligands; Nerve Tissue Proteins; Neurons, Afferent; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Structure-Activity Relationship | 2000 |
16 other study(ies) available for arvanil and anandamide
Article | Year |
---|---|
Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1.
Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. Topics: Aging; Amides; Amidohydrolases; Animals; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Brain; Brain Neoplasms; Capsaicin; Cell Movement; Culture Media, Conditioned; Dopamine; Endocannabinoids; Ethanolamines; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, SCID; Neoplasm Proteins; Neural Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Real-Time Polymerase Chain Reaction; RNA, Small Interfering; TRPV Cation Channels; Tumor Cells, Cultured | 2012 |
Arvanil and anandamide up-regulate CD36 expression in human peripheral blood mononuclear cells.
In this study we analysed the regulation of gene expression by arvanil and anandamide in human peripheral blood mononuclear cells (PBMCs) to clarify their immunosuppressive properties. PBMCs were activated, leading to CD36 down regulation, that was normalized by arvanil and anandamide. We used microarray technology to identify a regulatory pattern associated with cell proliferation in the presence of both substances. CD3-CD28 stimulated PBMCs showed a pattern of up-regulated and down-regulated genes after treatment with these substances. We selected and analysed several genes chosen by their function in the regulation of cell proliferation. We showed a transcriptional control of the CD36 gene by arvanil and anandamide associated with an increased protein expression, thus suggesting a possible role of CD36 in anandamide and arvanil anti-inflammatory pattern. Topics: Arachidonic Acids; Capsaicin; CD28 Antigens; CD3 Complex; CD36 Antigens; Endocannabinoids; Humans; Leukocytes, Mononuclear; Lymphocyte Activation; Oligonucleotide Array Sequence Analysis; Polyunsaturated Alkamides; Up-Regulation | 2007 |
Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret.
Cannabinoid (CB) agonists suppress nausea and vomiting (emesis). Similarly, transient receptor potential vanilloid-1 (TRPV1) receptor agonists are anti-emetic. Arvanil, N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide, is a synthetic 'hybrid' agonist of CB1 and TRPV1 receptors. Anandamide and N-arachidonoyl-dopamine (NADA) are endogenous agonists at both these receptors. We investigated if arvanil, NADA and anandamide were anti-emetic in the ferret and their mechanism of action. All compounds reduced the episodes of emesis in response to morphine 6 glucuronide. These effects were attenuated by AM251, a CB1 antagonist that was pro-emetic per se, and TRPV1 antagonists iodoresiniferatoxin and AMG 9810, which were without pro-emetic effects. Similar sensitivity to arvanil and NADA was found for prodromal signs of emesis. We analysed the distribution of TRPV1 receptors in the ferret brainstem and, for comparison, the co-localization of CB1 and TRPV1 receptors in the mouse brainstem. TRPV1 immunoreactivity was largely restricted to the nucleus of the solitary tract of the ferret, with faint labeling in the dorsal motor nucleus of the vagus and sparse distribution in the area postrema. A similar distribution of TRPV1, and its extensive co-localization with CB1, was observed in the mouse. Our findings suggest that CB1 and TRPV1 receptors in the brainstem play a major role in the control of emesis by agonists of these two receptors. While there appears to be an endogenous 'tone' of CB1 receptors inhibiting emesis, this does not seem to be the case for TRPV1 receptors, indicating that endogenously released endocannabinoids/endovanilloids inhibit emesis preferentially via CB1 receptors. Topics: Acrylamides; Animals; Antiemetics; Arachidonic Acids; Area Postrema; Autonomic Pathways; Brain Stem; Bridged Bicyclo Compounds, Heterocyclic; Cannabinoids; Capsaicin; Dopamine; Emetics; Endocannabinoids; Ferrets; Male; Mice; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Solitary Nucleus; TRPV Cation Channels; Vagus Nerve; Vomiting | 2007 |
Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis.
This study examined the immunomodulatory effect of arvanil, a synthetic capsaicin-anandamide hybrid. Arvanil inhibits lymphocyte proliferation and IFN-gamma production. The phenotype of activated CD4+T cells treated with arvanil shows a down-regulation of T cell activation markers such as CD25, HLA-DR and CD134/OX40. Arvanil and anandamide do not induce apoptosis on CD4+T cells. Arvanil blocks the G1/S phase transition of the cell cycle in stimulated peripheral blood mononuclear cells, inducing activation of p21waf-1/cip-1 and phosphorylation of Akt/PKB. In vivo, arvanil ameliorates experimental autoimmune encephalomyelitis in the SJL/J mouse. Our findings have relevance for the use of arvanil and related compounds as a novel immunotherapeutic approach in the treatment of multiple sclerosis. Topics: Animals; Arachidonic Acids; Blotting, Western; Body Weight; Cannabinoid Receptor Modulators; Capsaicin; CD4-Positive T-Lymphocytes; Cell Line; Cell Proliferation; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Dose-Response Relationship, Immunologic; Drug Interactions; Encephalomyelitis, Autoimmune, Experimental; Endocannabinoids; Enzyme Activation; Female; Flow Cytometry; Humans; Leukocytes, Mononuclear; Lymphocyte Activation; Mice; Myelin Proteolipid Protein; Peptide Fragments; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-akt; Statistics, Nonparametric; Time Factors | 2006 |
Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation.
The endocannabinoid anandamide is an emerging potential signalling molecule in the cardiovascular system. Anandamide causes vasodilatation, bradycardia and hypotension in animals and has been implicated in the pathophysiology of endotoxic, haemorrhagic and cardiogenic shock, but its vascular effects have not been studied in man. Human forearm blood flow and skin microcirculatory flow were recorded using venous occlusion plethysmography and laser-Doppler perfusion imaging (LDPI), respectively. Each test drug was infused into the brachial artery or applied topically on the skin followed by a standardized pin-prick to disrupt the epidermal barrier. Anandamide failed to affect forearm blood flow when administered intra-arterially at infusion rates of 0.3-300 nmol min(-1). The highest infusion rate led to an anandamide concentration of approximately 1 microM in venous blood as measured by mass spectrometry. Dermal application of anandamide significantly increased skin microcirculatory flow and coapplication of the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine inhibited this effect. The TRPV1 agonists capsaicin, olvanil and arvanil all induced concentration-dependent increases in skin blood flow and burning pain when administered dermally. Coapplication of capsazepine inhibited blood flow and pain responses to all three TRPV1 agonists. This study shows that locally applied anandamide is a vasodilator in the human skin microcirculation. The results are consistent with this lipid being an activator of TRPV1 on primary sensory nerves, but do not support a role for anandamide as a circulating vasoactive hormone in the human forearm vascular bed. Topics: Adult; Arachidonic Acids; Benzylamines; Capsaicin; Endocannabinoids; Female; Forearm; Humans; Laser-Doppler Flowmetry; Male; Microcirculation; Middle Aged; Muscle, Skeletal; Plethysmography; Polyunsaturated Alkamides; Regional Blood Flow; Skin; TRPV Cation Channels | 2005 |
Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis.
Recent studies have addressed the changes in endocannabinoid ligands and receptors that occur in multiple sclerosis, as a way to explain the efficacy of cannabinoid compounds to alleviate spasticity, pain, tremor, and other signs of this autoimmune disease. Using Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we recently found a decrease in cannabinoid CB1 receptors mainly circumscribed to the basal ganglia, which could be related to the motor disturbances characteristic of these rats. In the present study, using the same model, we explored the potential changes in several neurotransmitters in the basal ganglia that might be associated with the motor disturbances described in these rats, but we only found a small increase in glutamate contents in the globus pallidus. We also examined whether the motor disturbances and the changes of CB1 receptors found in the basal ganglia of EAE rats disappear after the treatment with rolipram, an inhibitor of type IV phosphodiesterase able to supress EAE in different species. Rolipram attenuated clinical decline, reduced motor inhibition, and normalized CB1 receptor gene expression in the basal ganglia. As a third objective, we examined whether EAE rats also exhibited changes in endocannabinoid levels as shown for CB1 receptors. Anandamide and 2-arachidonoylglycerol levels decreased in motor related regions (striatum, midbrain) but also in other brain regions, although the pattern of changes for each endocannabinoid was different. Finally, we hypothesized that the elevation of the endocannabinoid activity, following inhibition of endocannabinoid uptake, might be beneficial in EAE rats. AM404, arvanil, and OMDM2 were effective to reduce the magnitude of the neurological impairment in EAE rats, whereas VDM11 did not produce any effect. The beneficial effects of AM404 were reversed by blocking TRPV1 receptors with capsazepine, but not by blocking CB1 receptors with SR141716, thus indicating the involvement of endovanilloid mechanisms in these effects. However, a role for CB1 receptors is supported by additional data showing that CP55,940 delayed EAE progression. In summary, our data suggest that reduction of endocannabinoid signaling is associated with the development of EAE in rats. We have also proved that the reduction of CB1 receptors observed in these rats is corrected following treatment with a compound used in EAE such as rolipram. In addition, the direct or i Topics: 3',5'-Cyclic-AMP Phosphodiesterases; Animals; Arachidonic Acids; Basal Ganglia; Brain; Cannabinoid Receptor Modulators; Capsaicin; Cyclic Nucleotide Phosphodiesterases, Type 4; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Endocannabinoids; Gene Expression; Glycerides; Male; Multiple Sclerosis; Phosphodiesterase Inhibitors; Polyunsaturated Alkamides; Rats; Rats, Inbred Lew; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Rolipram; TRPV Cation Channels | 2005 |
Effect of arvanil (N-arachidonoyl-vanillyl-amine), a nonpungent anandamide-capsaicin hybrid, on ion currents in NG108-15 neuronal cells.
The effects of arvanil (N-arachidonoyl-vanillyl-amine), a structural hybrid between capsaicin and anandamide, on ion currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG108-15, were examined with the aid of the whole-cell voltage-clamp technique. Arvanil (0.2-50 microM) caused an inhibition of voltage-dependent L-type Ca(2+) current (I(Ca,L)) in a concentration-dependent manner. Arvanil produced no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC(50) value of arvanil-induced inhibition of I(Ca,L) was 2 microM. Arvanil (5 microM) could shift the steady-state inactivation curve of I(Ca,L) to a more negative potential by approximately -15mV. No effect of arvanil (20 microM) on delayed rectifier K(+) current (I(K(DR))) was observed; however, capsaicin (20 microM), glyceryl nonivamide (20 microM) and capsinolol (20 microM) suppressed it significantly. Arvanil (20 microM) caused a slight reduction in the amplitude of erg (ether-à-go-go-related)-mediated K(+) current (I(K(erg))) without modifying the activation curve of this current, while capsaicin and glyceryl nonivamide were more effective in suppressing I(K(erg)). Under current-clamp configuration, arvanil decreased the firing frequency of action potentials. Arvanil-mediated inhibition of I(Ca,L) appeared to be independent of its binding to either vanilloid or cannabinoid receptors. The channel-blocking properties of arvanil may, at least in part, contribute to the underlying mechanisms by which it affects neuronal or neuroendocrine function. Topics: Action Potentials; Animals; Arachidonic Acids; Calcium Channels, L-Type; Capsaicin; Cell Line; Delayed Rectifier Potassium Channels; Drug Interactions; Endocannabinoids; Glycerol; Hybrid Cells; Mice; Neurons; omega-Conotoxin GVIA; Pertussis Toxin; Polyunsaturated Alkamides; Potassium Channels; Potassium Channels, Voltage-Gated; Rats | 2003 |
Evidence against the presence of an anandamide transporter.
On the basis of temperature dependency, saturability, selective inhibition, and substrate specificity, it has been proposed that an anandamide transporter exists. However, all of these studies have examined anandamide accumulation at long time points when downstream effects such as metabolism and intracellular sequestration are operative. In the current study, we have investigated the initial rates (<1 min) of anandamide accumulation in neuroblastoma and astrocytoma cells in culture and have determined that uptake is not saturable with increasing concentrations of anandamide. However, anandamide hydrolysis, after uptake in neuroblastoma cells, was saturable at steady-state time points (5 min), suggesting that fatty acid amide hydrolase (FAAH) may be responsible for observed saturation of uptake at long time points. In general, arvanil, olvanil, and N-(4-hydroxyphenyl)arachidonylamide (AM404) have been characterized as transport inhibitors in studies using long incubations. However, we found these "transport inhibitors" did not inhibit anandamide uptake in neuroblastoma and astrocytoma cells at short time points (40 sec or less). Furthermore, we confirmed that these inhibitors in vitro were actually inhibitors of FAAH. Therefore, the likely mechanism by which the transport inhibitors raise anandamide levels to exert pharmacological effects is by inhibiting FAAH, and they should be reevaluated in this context. Immunofluorescence has indicated that FAAH staining resides mainly on intracellular membranes of neuroblastoma cells, and this finding is consistent with our observed kinetics of anandamide hydrolysis. In summary, these data suggest that anandamide uptake is a process of simple diffusion. This process is driven by metabolism and other downstream events, rather than by a specific membrane-associated anandamide carrier. Topics: Arachidonic Acids; Astrocytoma; Biological Transport; Cannabinoids; Capsaicin; Carrier Proteins; Endocannabinoids; Humans; Immunohistochemistry; Kinetics; Neuroblastoma; Polyunsaturated Alkamides; Tumor Cells, Cultured | 2003 |
Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases.
Type 1 vanilloid receptors (VR1) have been identified recently in the brain, in which they serve as yet primarily undetermined purposes. The endocannabinoid anandamide (AEA) and some of its oxidative metabolites are ligands for VR1, and AEA has been shown to afford protection against ouabain-induced in vivo excitotoxicity, in a manner that is only in part dependent on the type 1 cannabinoid (CB1) receptor. In the present study, we assessed whether VR1 is involved in neuroprotection by AEA and by arvanil, a hydrolysis-stable AEA analog that is a ligand for both VR1 and CB1. Furthermore, we assessed the putative involvement of lipoxygenase metabolites of AEA in conveying neuroprotection. Using HPLC and gas chromatography/mass spectroscopy, we demonstrated that rat brain and blood cells converted AEA into 12-hydroxy-N-arachidoylethanolamine (12-HAEA) and 15-hydroxy-N-arachidonoylethanolamine (15-HAEA) and that this conversion was blocked by addition of the lipoxygenase inhibitor nordihydroguaiaretic acid. Using magnetic resonance imaging we show the following: (1) pretreatment with the reduced 12-lipoxygenase metabolite of AEA, 12-HAEA, attenuated cytotoxic edema formation in a CB1 receptor-independent manner in the acute phase after intracranial injection of the Na+/K+-ATPase inhibitor ouabain; (2) the reduced 15-lipoxygenase metabolite, 15-HAEA, enhanced the neuroprotective effect of AEA in the acute phase; (3) modulation of VR1, as tested using arvanil, the VR1 agonist capsaicin, and the antagonist capsazepine, leads to neuroprotective effects in this model, and arvanil is a potent neuroprotectant, acting at both CB1 and VR1; and (4) the in vivo neuroprotective effects of AEA are mediated by CB1 but not by lipoxygenase metabolites or VR1. Topics: Animals; Animals, Newborn; Arachidonic Acids; Blood Cells; Brain; Brain Chemistry; Brain Mapping; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Endocannabinoids; Ethanolamines; Fatty Acids, Unsaturated; Lipoxygenase; Male; Masoprocol; Nerve Degeneration; Neuroprotective Agents; Ouabain; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Drug | 2003 |
A structure/activity relationship study on arvanil, an endocannabinoid and vanilloid hybrid.
Arvanil, a structural "hybrid" between the endogenous cannabinoid CB1 receptor ligand anandamide and capsaicin, is a potent agonist for the capsaicin receptor VR1 (vanilloid receptor type 1), inhibits the anandamide membrane transporter (AMT), and induces cannabimimetic responses in mice. Novel arvanil derivatives prepared by N-methylation, replacement of the amide with urea and thiourea moieties, and manipulation of the vanillyl group were evaluated for their ability to bind/activate CB1 receptors, activate VR1 receptors, inhibit the AMT and fatty acid amide hydrolase (FAAH), and produce cannabimimetic effects in mice. The compounds did not stimulate the CB1 receptor. Methylation of the amide group decreased the activity at VR1, AMT, and FAAH. On the aromatic ring, the substitution of the 3-methoxy group with a chlorine atom or the lack of the 4-hydroxy group decreased the activity on VR1 and AMT, but not the affinity for CB1 receptors, and increased the capability to inhibit FAAH. The urea or thiourea analogs retained activity at VR1 and AMT but exhibited little affinity for CB1 receptors. The urea analog was a potent FAAH inhibitor (IC50 = 2.0 microM). A water-soluble analog of arvanil, O-2142, was as active on VR1, much less active on AMT and CB1, and more potent on FAAH. All compounds induced a response in the mouse "tetrad", particularly those with EC50 <10 nM on VR1. However, the most potent compound, N-N'-di-(3-chloro-4-hydroxy)benzyl-arachidonamide (O-2093, ED50 approximately 0.04 mg/kg), did not activate VR1 or CB1 receptors. Our findings suggest that VR1 and/or as yet uncharacterized receptors produce cannabimimetic responses in mice in vivo. Topics: Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Carrier Proteins; Cytosol; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Mice; Motor Activity; Pain Measurement; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug | 2002 |
Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens.
1. This study was directed at exploring the structure-activity relationship for anandamide and certain of its analogues at the rat VR1 receptor in transfected cells and at investigating the relative extent to which anandamide interacts with CB(1) and vanilloid receptors in the mouse vas deferens. 2. pK(i) values for displacement of [(3)H]-resiniferatoxin from membranes of rVR1 transfected CHO cells were significantly less for anandamide (5.78) than for its structural analogues N-(4-hydroxyphenyl)-arachidonylamide (AM404; 6.18) and N-(3-methoxy-4-hydroxy)benzyl-arachidonylamide (arvanil; 6.77). 3. pEC(50) values for stimulating (45)Ca(2+) uptake into rVR1 transfected CHO cells were significantly less for anandamide (5.80) than for AM404 (6.32) or arvanil (9.29). Arvanil was also significantly more potent than capsaicin (pEC(50)=7.37), a compound with the same substituted benzyl polar head group as arvanil. 4. In the mouse vas deferens, resiniferatoxin was 218 times more potent than capsaicin as an inhibitor of electrically-evoked contractions. Both drugs were antagonized to a similar extent by capsazepine (pK(B)=6.93 and 7.18 respectively) but were not antagonized by SR141716A (1 microM). Anandamide was less susceptible than capsaicin to antagonism by capsazepine (pK(B)=6.02) and less susceptible to antagonism by SR141716A (pK(B)=8.66) than methanandamide (pK(B)=9.56). WIN55212 was antagonized by SR141716A (pK(B)=9.02) but not by capsazepine (10 microM). 5. In conclusion, anandamide and certain of its analogues have affinity and efficacy at the rat VR1 receptor. In the mouse vas deferens, which seems to express vanilloid and CB(1) receptors, both receptor types appear to contribute to anandamide-induced inhibition of evoked contractions. Topics: Animals; Arachidonic Acids; Benzoxazines; Binding, Competitive; Biological Transport; Calcium; Calcium Channel Blockers; Cannabinoids; Capsaicin; CHO Cells; Cricetinae; Drug Interactions; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Male; Mice; Morpholines; Muscle Contraction; Naphthalenes; Phenylmethylsulfonyl Fluoride; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Radioligand Assay; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Structure-Activity Relationship; Transfection; TRPV Cation Channels; Vas Deferens | 2001 |
Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor "hybrid" ligands.
Anandamide and the metabolically stabler analogs, (R)-1'-methyl-2'-hydroxy-ethyl-arachidonamide (Met-AEA) and N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide (arvanil), are CB(1) cannabinoid and VR(1) vanilloid receptors agonists. We synthesized 1',1'-dimethylheptyl-arvanil (O-1839) and six other AEA analogs obtained by addition of either a hydroxy, cyano, or bromo group on the C-20 atom of 1,1'-dimethylpentyl-Met-AEA (O-1811, O-1812 and O-1860, respectively) or 1,1'-dimethylpentyl-arvanil (O-1856, O-1895 and O-1861, respectively). The compounds were tested for their (i) affinity for CB(1) and CB(2) receptors, (ii) capability to activate VR1 receptors, (iii) inhibitory effect on the anandamide hydrolysis and on the anandamide membrane transporter, and (iv) cannabimimetic activity in the mouse 'tetrad' of in vivo assays. O-1812 is the first ligand ever proven to be highly (500- to 1000-fold) selective for CB(1) vs both VR(1) and CB(2) receptors, while O-1861 is the first true "hybrid" agonist of CB(1)/VR(1) receptors and a compound with potential therapeutic importance. The activities of the seven compounds in vivo did not correlate with their activities at either CB(1) or VR(1) receptors, thus suggesting the existence of other brain sites of action mediating some of their neurobehavioral actions in mice. Topics: Animals; Arachidonic Acids; Benzoxazines; Binding, Competitive; Calcium; Capsaicin; Cell Line; Cyclohexanols; Cytosol; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Ligands; Membranes; Morpholines; Naphthalenes; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Structure-Activity Relationship; Tritium; TRPV Cation Channels; Tumor Cells, Cultured | 2001 |
Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells.
Palmitoylethanolamide (PEA) has been shown to act in synergy with anandamide (arachidonoylethanolamide; AEA), an endogenous agonist of cannabinoid receptor type 1 (CB(1)). This synergistic effect was reduced by the CB(2) cannabinoid receptor antagonist SR144528, although PEA does not activate either CB(1) or CB(2) receptors. Here we show that PEA potently enhances the anti-proliferative effects of AEA on human breast cancer cells (HBCCs), in part by inhibiting the expression of fatty acid amide hydrolase (FAAH), the major enzyme catalysing AEA degradation. PEA (1-10 microM) enhanced in a dose-related manner the inhibitory effect of AEA on both basal and nerve growth factor (NGF)-induced HBCC proliferation, without inducing any cytostatic effect by itself. PEA (5 microM) decreased the IC(50) values for AEA inhibitory effects by 3-6-fold. This effect was not blocked by the CB(2) receptor antagonist SR144528, and was not mimicked by a selective agonist of CB(2) receptors. PEA enhanced AEA-evoked inhibition of the expression of NGF Trk receptors, which underlies the anti-proliferative effect of the endocannabinoid on NGF-stimulated MCF-7 cells. The effect of PEA was due in part to inhibition of AEA degradation, since treatment of MCF-7 cells with 5 microM PEA caused a approximately 30-40% down-regulation of FAAH expression and activity. However, PEA also enhanced the cytostatic effect of the cannabinoid receptor agonist HU-210, although less potently than with AEA. PEA did not modify the affinity of ligands for CB(1) or CB(2) receptors, and neither did it alter the CB(1)/CB(2)-mediated inhibitory effect of AEA on adenylate cyclase type V, nor the expression of CB(1) and CB(2) receptors in MCF-7 cells. We suggest that long-term PEA treatment of cells may positively affect the pharmacological activity of AEA, in part by inhibiting FAAH expression. Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Arachidonic Acids; Blotting, Western; Breast Neoplasms; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Cell Division; Colforsin; COS Cells; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Glycerides; Humans; Hydrolysis; Inhibitory Concentration 50; Palmitic Acids; Polyunsaturated Alkamides; Protein Binding; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; Transfection; Tumor Cells, Cultured | 2001 |
Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity.
Some synthetic agonists of the VR1 vanilloid (capsaicin) receptor also inhibit the facilitated transport into cells of the endogenous cannabinoid anandamide (arachidonoylethanolamide, AEA). Here we tested several AEA derivatives containing various derivatized phenyl groups or different alkyl chains as either inhibitors of the AEA membrane transporter (AMT) in intact cells or functional agonists of the VR1 vanilloid receptor in HEK cells transfected with the human VR1. We found that four known AMT inhibitors, AM404, arvanil, olvanil and linvanil, activate VR1 receptors at concentrations 400-10000-fold lower than those necessary to inhibit the AMT. However, we also found three novel AEA derivatives, named VDM11, VDM12 and VDM13, which inhibit the AMT as potently as AM404 but exhibit little or no agonist activity at hVR1. These compounds are weak inhibitors of AEA enzymatic hydrolysis and poor CB(1)/CB(2) receptor ligands. We show for the first time that, despite the overlap between the chemical moieties of AMT inhibitors and VR1 agonists, selective inhibitors of AEA uptake that do not activate VR1 (e.g. VDM11) can be developed. Topics: Animals; Arachidonic Acids; Binding, Competitive; Biological Transport; Calcium; Capsaicin; Cell Line; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Ligands; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; TRPV Cation Channels; Tumor Cells, Cultured | 2000 |
Neurobehavioral activity in mice of N-vanillyl-arachidonyl-amide.
We studied the cannabimimetic properties of N-vanillyl-arachidonoyl-amide (arvanil), a potential agonist of cannabinoid CB(1) and capsaicin VR(1) receptors, and an inhibitor of the facilitated transport of the endocannabinoid anandamide. Arvanil and anandamide exhibited similar affinities for the cannabinoid CB(1) receptor, but arvanil was less efficacious in inducing cannabinoid CB(1) receptor-mediated GTPgammaS binding. The K(i) of arvanil for the vanilloid VR(1) receptor was 0.28 microM. Administered i.v. to mice, arvanil was 100 times more potent than anandamide in producing hypothermia, analgesia, catalepsy and inhibiting spontaneous activity. These effects were not attenuated by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chloro-phenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.HCl (SR141716A). Arvanil (i.t. administration) induced analgesia in the tail-flick test that was not blocked by either SR141716A or the vanilloid VR(1) antagonist capsazepine. Conversely, capsaicin was less potent as an analgesic (ED(50) 180 ng/mouse, i.t.) and its effects attenuated by capsazepine. The analgesic effect of anandamide (i.t.) was also unaffected by SR141716A but was 750-fold less potent (ED(50) 20.5 microg/mouse) than capsaicin. These data indicate that the neurobehavioral effects exerted by arvanil are not due to activation of cannabinoid CB(1) or vanilloid VR(1) receptors. Topics: Analgesics; Animals; Arachidonic Acids; Behavior, Animal; Brain; Cannabinoid Receptor Modulators; Capsaicin; CHO Cells; Cricetinae; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Male; Mice; Mice, Inbred ICR; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug | 2000 |
Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors.
We investigated the effect of changing the length and degree of unsaturation of the fatty acyl chain of N-(3-methoxy-4-hydroxy)-benzyl-cis-9-octadecenoamide (olvanil), a ligand of vanilloid receptors, on its capability to: (i) inhibit anandamide-facilitated transport into cells and enzymatic hydrolysis, (ii) bind to CB1 and CB2 cannabinoid receptors, and (iii) activate the VR1 vanilloid receptor. Potent inhibition of [(14)C]anandamide accumulation into cells was achieved with C20:4 n-6, C18:3 n-6 and n-3, and C18:2 n-6 N-acyl-vanillyl-amides (N-AVAMs). The saturated analogues and Delta(9)-trans-olvanil were inactive. Activity in CB1 binding assays increased when increasing the number of cis-double bonds in a n-6 fatty acyl chain and, in saturated N-AVAMs, was not greatly sensitive to decreasing the chain length. The C20:4 n-6 analogue (arvanil) was a potent inhibitor of anandamide accumulation (IC(50) = 3.6 microM) and was 4-fold more potent than anandamide on CB1 receptors (Ki = 0.25-0.52 microM), whereas the C18:3 n-3 N-AVAM was more selective than arvanil for the uptake (IC(50) = 8.0 microM) vs CB1 receptors (Ki = 3.4 microM). None of the compounds efficiently inhibited [(14)C]anandamide hydrolysis or bound to CB2 receptors. All N-AVAMs activated the cation currents coupled to VR1 receptors overexpressed in Xenopus oocytes. In a simple, intact cell model of both vanilloid- and anandamide-like activity, i.e., the inhibition of human breast cancer cell (HBCC) proliferation, arvanil was shown to behave as a "hybrid" activator of cannabinoid and vanilloid receptors. Topics: Amidohydrolases; Animals; Arachidonic Acids; Binding Sites; Biological Transport; Capsaicin; Cell Division; Cell Line; Cell Membrane; Diffusion; Electric Conductivity; Endocannabinoids; Fatty Acids, Unsaturated; Humans; Ligands; Mice; Oocytes; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Xenopus laevis | 1999 |