artelinic-acid and artesunic-acid

artelinic-acid has been researched along with artesunic-acid* in 2 studies

Other Studies

2 other study(ies) available for artelinic-acid and artesunic-acid

ArticleYear
Nuclear magnetic resonance and molecular modeling analysis of the interaction of the antimalarial drugs artelinic acid and artesunic acid with beta-cyclodextrin.
    Journal of pharmaceutical sciences, 2004, Volume: 93, Issue:8

    The artemisinin derivatives artelinic acid and artesunic acid are members of a class of compounds that have shown promise for the treatment of multidrug resistant strains of Plasmodium falciparum. Unfortunately, these compounds exhibit poor solubility and stability in aqueous solution. The research presented herein was conducted to determine whether complexation of artelinic acid or artesunic acid with beta-cyclodextrin would result in complexes with increased aqueous solubility while retaining the potent antimalarial activity of these compounds. Preliminary complexation studies with natural beta-cyclodextrins were conducted as a proof of concept, with a primary focus on understanding the electrostatic interactions that stabilize the resulting complexes. Complex formation was monitored using UV spectroscopy. The structures of the resulting complexes were determined using multidimensional nuclear magnetic resonance spectroscopy (NMR) and molecular modeling. NMR results are most consistent for artelinic acid and beta-cyclodextrin forming complexes in a ratio of 2:1; however, the presence of 1:1, 2:2, and 3:1 complexes in solution cannot be excluded based on the experimental data collected. The NMR data also indicate selective insertion of artelinic acid into the hydrophobic cavity of the beta-cyclodextrin via the primary face. NMR results indicate artesunic acid forms a similar complex with beta-cyclodextrin in a ratio of 1:1; again however, the presence of 1:1, 2:2, and 3:1 complexes in solution cannot be ruled out.

    Topics: Animals; Antimalarials; Artemisinins; beta-Cyclodextrins; Magnetic Resonance Spectroscopy; Models, Molecular; Plasmodium falciparum; Sesquiterpenes; Static Electricity; Succinates

2004
The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats.
    The Journal of pharmacy and pharmacology, 1998, Volume: 50, Issue:2

    The pharmacokinetics and bioavailability of dihydroartemisinin (DQHS), artemether (AM), arteether (AE), artesunic acid (AS) and artelinic acid (AL) have been investigated in rats after single intravenous, intramuscular and intragastric doses of 10 mg kg(-1). Plasma was separated from blood samples collected at different times after dosing and analysed for parent drug. Plasma samples from rats dosed with AM, AE, AS and AL were also analysed for DQHS which is known to be an active metabolite of these compounds. Plasma levels of all parent compounds decreased biexponentially and were a reasonable fit to a two-compartment open model. The resulting pharmacokinetic parameter estimates were substantially different not only between drugs but also between routes of administration for the same drug. After intravenous injection the highest plasma level was obtained with AL, followed by DQHS, AM, AE and AS. This resulted in the lowest steady-state volume of distribution (0.39 L) for AL, increasing thereafter for DQHS (0.50 L), AM (0.67 L), AE (0.72 L) and AS (0.87 L). Clearance of AL (21-41 mL min(-1) kg(-1)) was slower than that of the other drugs for all three routes of administration (DQHS, 55-64 mL min(-1) kg(-1); AM, 91-92 mL min(-1) kg(-1); AS, 191-240 mL min(-1) kg(-1); AE, 200-323 mL min(-1) kg(-1)). In addition the terminal half-life after intravenous dosing was longest for AL (1.35 h), followed by DQHS (0.95 h), AM (0.53 h), AE (0.45 h) and AS (0.35 h). Bioavailability after intramuscular injection was highest for AS (105%), followed by AL (95%) and DQHS (85%). The low bioavailability of AM (54%) and AE (34%) is probably the result of slow, prolonged absorption of the sesame-oil formulation from the injection site. After oral administration, low bioavailability (19-35%) was observed for all five drugs. In-vivo AM, AE, AS and AL were converted to DQHS to different extents; the ranking order of percentage of total dose converted to DQHS was AS (25.3-72.7), then AE (3.4-15.9), AM (3.7-12.4) and AL (1.0-4.3). The same ranking order was obtained for all formulations and routes of administration. The drug with the highest percentage conversion to DQHS was artesunic acid. Because DQHS has significant antimalarial activity, relatively low DQHS production could still contribute significantly to the antimalarial efficacy of these drugs. This is the first time the pharmacokinetics, bioavailability and conversion to DQHS of these drugs have been directly compared after

    Topics: Absorption; Animals; Antimalarials; Area Under Curve; Artemether; Artemisinins; Biological Availability; Bridged Bicyclo Compounds, Heterocyclic; Male; Rats; Rats, Sprague-Dawley; Sesquiterpenes; Succinates

1998