arteannuin-b and artemisitene

arteannuin-b has been researched along with artemisitene* in 2 studies

Other Studies

2 other study(ies) available for arteannuin-b and artemisitene

ArticleYear
A rapid method for the determination of artemisinin and its biosynthetic precursors in Artemisia annua L. crude extracts.
    Journal of pharmaceutical and biomedical analysis, 2013, Volume: 84

    A rapid high-pressure liquid chromatography (HPLC) tandem mass spectrometry (TQD) method for the determination of artemisinin, 9-epi-artemisinin, artemisitene, dihydroartemisinic acid, artemisinic acid and arteannuin B in Artemisia annua extracts is described. Detection and quantification of 9-epi-artemisinin in crude extracts are reported for the first time. In this method all six metabolites are resolved and eluted within 6 min with minimal sample preparation. A recovery of between 96.25% and 103.59% was obtained for all metabolites analysed and the standard curves were linear (r(2)>0.99) over the concentration range of 0.15-10 μg mL(-1) for artemisinin, 9-epi-artemisinin, artemisitene and arteannuin B, and the range of 3.75-120 μg mL(-1) for dihydroartemisinic acid and artemisinic acid. All validation indices were satisfactory, showing the method to be robust, quick, sensitive and adequate for a range of applications including high throughput (HTP) analysis.

    Topics: Artemisia annua; Artemisinins; Chromatography, High Pressure Liquid; Plant Extracts; Tandem Mass Spectrometry

2013
Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract--possible synergistic and resistance mechanisms.
    PloS one, 2013, Volume: 8, Issue:11

    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L(-1)), dihydroartemisinic acid (70.0±0.3 mg L(-1)), arteannuin B (1.3±0.0 mg L(-1)), isovitexin (105.0±7.2 mg L(-1)) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B's potentiation of artemisinin.

    Topics: Antimalarials; Artemisia annua; Artemisinins; Cinnamates; Depsides; Drug Synergism; Plant Extracts; Plasmodium falciparum; Rosmarinic Acid

2013