arginine has been researched along with quinapril in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (28.57) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Frohlich, ED; Ono, H; Ono, Y | 1 |
Bennett, MA; Hillier, C; Thurston, H | 1 |
Koller, A; Lotz, G; Racz, A; Veresh, Z | 1 |
1 review(s) available for arginine and quinapril
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for arginine and quinapril
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
ACE inhibition prevents and reverses L-NAME-exacerbated nephrosclerosis in spontaneously hypertensive rats.
Topics: Analysis of Variance; Angiotensin-Converting Enzyme Inhibitors; Animals; Arginine; Blood Pressure; Body Weight; Enzyme Inhibitors; Glomerular Filtration Rate; Heart; Heart Rate; Hemodynamics; Isoquinolines; Kidney; Kidney Glomerulus; Male; Nephrosclerosis; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Organ Size; Quinapril; Rats; Rats, Inbred SHR; Renal Circulation; Tetrahydroisoquinolines; Vascular Resistance | 1996 |
Endothelium-dependent relaxation in resistance arteries from spontaneously hypertensive rats: effect of long-term treatment with perindopril, quinapril, hydralazine or amlodipine.
Topics: Acetylcholine; Amlodipine; Animals; Antihypertensive Agents; Arginine; Bradykinin; Dose-Response Relationship, Drug; Endothelium, Vascular; Hydralazine; Hypertension; Indoles; Isoquinolines; Mesenteric Arteries; Nitroarginine; Perindopril; Quinapril; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetrahydroisoquinolines; Vasodilation | 1996 |
ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway.
Topics: Acetophenones; Angiotensin II; Animals; Arginine; Arterioles; Enzyme Inhibitors; Losartan; Male; Muscle, Skeletal; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Quinapril; Rats; Rats, Wistar; Signal Transduction; Superoxides; Tetrahydroisoquinolines; Vasoconstriction; Vasodilation | 2008 |