arbutin has been researched along with prunasin* in 1 studies
1 other study(ies) available for arbutin and prunasin
Article | Year |
---|---|
Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 beta-glucosidase with cellodextrinase and cyanoglycosidase activities.
Prevotella ruminicola B(1)4 is a gram-negative, anaerobic gastrointestinal bacterium. A 2.4-kbp chromosomal fragment from P. ruminicola encoding an 87-kDa aryl-glucosidase (CdxA) with cellodextrinase activity was cloned into Escherichia coli DH5 alpha and sequenced. CdxA activity was found predominantly in the membrane fraction of both P. ruminicola and E. coli, but P. ruminicola localized the protein extracellularly while E. coli did not. The hydrolase had the highest activity on cellodextrins (3.43 to 4.13 mumol of glucose released min-1 mg of protein-1) and p-nitrophenyl-beta-D-glucoside (3.54 mumol min-1 mg of protein-1). Significant activity (70% of p-nitrophenyl-beta-D-glucoside activity) was also detected on arbutin and prunasin. Less activity was obtained with cellobiose, amygdalin, or gentiobiose. CdxA attacks cellodextrins from the nonreducing end, releasing glucose units, and appears to be an exo-1,4-beta-glucosidase (EC 3.2.1.74) which also is able to attack beta-1,6 linkages. Comparison of the deduced amino acid sequence with other glycosyl-hydrolases suggests that this enzyme belongs to family 3 (B. Henrissat, Biochem. J. 280:309-316, 1991). On the basis of this sequence alignment, the catalytic residues are believed to be Asp-275 and Glu-265. This is the first report of a cloned ruminal bacterial enzyme which can cleave cyanogenic plant compounds and which may therefore contribute to cyanide toxicity in ruminants. Topics: Amino Acid Sequence; Arbutin; Bacterial Proteins; Base Sequence; beta-Glucosidase; Cellulase; Cellulose; Cloning, Molecular; Dextrins; Escherichia coli; Glucan 1,4-beta-Glucosidase; Glycosides; Molecular Sequence Data; Nitriles; Prevotella; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Subcellular Fractions; Substrate Specificity | 1995 |