arbutin and myricetin

arbutin has been researched along with myricetin* in 1 studies

Other Studies

1 other study(ies) available for arbutin and myricetin

ArticleYear
UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts.
    Phytochemistry, 2015, Volume: 115

    The aim of this study was to get a rapid metabolic fingerprinting and to gain insight into the metabolic profiling of Arctostaphylos pungens H. B. K., a plant morphologically similar to Arctostaphylos uva-ursi (L.) Spreng. (bearberry) but with a lower arbutin (Arb) content. According to the European Pharmacopoeia the Arb content in the dried leaf of A. uva-ursi (L.) Spreng. must be at least 7% (wt/wt) but other species, like A. pungens, are unintentionally or fraudulently marketed instead of it. Therefore, methanolic leaf extracts of nine A. uva-ursi and six A. pungens samples labeled and marketed as "bearberry leaf" have been analyzed. A five-minute gradient with a UHPLC-PDA-ESI-TOF/MS on an Acquity BEH C18 (50×2.1 mm i.d.) 1.7 μm analytical column has been used for the purpose. A comprehensive assignment of secondary metabolites has been carried out in a comparative study of the two species. Among twenty-nine standards of natural compounds analyzed, fourteen have been identified, while other fifty-five metabolites have been tentatively assigned. Moreover, differences in both metabolic fingerprinting and profiling have been evidenced by statistical multivariate analysis. Specifically, main variations have been observed in the relative content for Arb, as expected, and for some galloyl derivative like tetra- and pentagalloylglucose more abundant in A. uva-ursi than in A. pungens. Furthermore, differences in flavonols profile, especially in myricetin and quercetin glycosilated derivatives, were observed. Based on principal component analysis myricetrin, together with a galloyl arbutin isomer and a disaccharide are herein proposed as distinctive metabolites for A. pungens.

    Topics: Arbutin; Arctostaphylos; Ericaceae; Flavonoids; Hydrolyzable Tannins; Metabolomics; Methanol; Nuclear Magnetic Resonance, Biomolecular; Phenols; Plant Extracts; Plant Leaves; Quercetin

2015