arachidonyltrifluoromethane and methyl-arachidonylfluorophosphonate

arachidonyltrifluoromethane has been researched along with methyl-arachidonylfluorophosphonate* in 6 studies

Reviews

1 review(s) available for arachidonyltrifluoromethane and methyl-arachidonylfluorophosphonate

ArticleYear
A hydrolase enzyme inactivating endogenous ligands for cannabinoid receptors.
    The journal of medical investigation : JMI, 1998, Volume: 45, Issue:1-4

    Cannabinoids are psychoactive components of marijuana, and bind to specific G protein-coupled receptors in the brain and other mammalian tissues. Anandamide (arachidonoylethanolamide) was discovered as an endogenous agonist for the cannabinoid receptors. Hydrolysis of anandamide to arachidonic acid and ethanolamine results in the loss of its biological activities. The enzyme responsible for this hydrolysis was solubilized, partially purified from the microsomes of porcine brain, and referred to as anandamide amidohydrolase. In addition to the anandamide hydrolysis, the enzyme preparation catalyzed anandamide synthesis by the condensation of arachidonic acid with ethanolamine. Several lines of enzymological evidence suggested that a single enzyme catalyzes both the hydrolysis and synthesis of anandamide. This reversibility was confirmed by the use of a recombinant enzyme of rat liver overexpressed in COS-7 cells. However, in consideration of the high Km value for ethanolamine as a substrate for the anandamide synthesis, the enzyme was presumed to act as a hydrolase rather than a synthase under physiological conditions. The recombinant enzyme acted not only as an amidase hydrolyzing anandamide and other fatty acid amides but also as an esterase hydrolyzing methyl ester of arachidonic acid. 2-Arachidonoylglycerol, which was found recently to be another endogenous ligand, was also efficiently hydrolyzed by the esterase activity of the same enzyme. The anandamide hydrolase and synthase activities were detected in a variety of rat organs, and liver showed by far the highest activities. A high anandamide hydrolase activity was also detected in small intestine but only after the homogenate was precipitated with acetone to remove endogenous lipids inhibiting the enzyme activity. The distribution of mRNA of the enzyme was in agreement with that of the enzyme activity.

    Topics: Amidohydrolases; Animals; Arachidonic Acid; Arachidonic Acids; COS Cells; Dronabinol; Endocannabinoids; Enzyme Inhibitors; Esterases; Ethanolamine; Fatty Acids; Hydrolysis; Intestine, Small; Ligands; Liver; Nerve Tissue Proteins; Organ Specificity; Organophosphonates; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Recombinant Fusion Proteins; Swine

1998

Other Studies

5 other study(ies) available for arachidonyltrifluoromethane and methyl-arachidonylfluorophosphonate

ArticleYear
Role of phospholipase A₂ (PLA₂) inhibitors in attenuating apoptosis of the corneal epithelial cells and mitigation of Acanthamoeba keratitis.
    Experimental eye research, 2013, Volume: 113

    The aim of this study is to determine if the mannose-induced protein (MIP-133) from Acanthamoeba castellanii trophozoites induces apoptosis of corneal epithelial cells through a cytosolic phospholipase A2α (cPLA2α)-mediated pathway. The efficacy of cPLA2α inhibitors to provide protection against Acanthamoeba keratitis was examined in vivo. Chinese hamster corneal epithelial (HCORN) cells were incubated with or without MIP-133. MIP-133 induces significant increase in cPLA2α and macrophage inflammatory protein-2 (MIP-2/CXCL2) levels from corneal cells. Moreover, cPLA2α inhibitors, MAFP (Methyl-arachidonyl fluorophosphonate) and AACOCF3 (Arachidonyl trifluoromethyl ketone), significantly reduce cPLA2α and CXCL2 from these cells (P < 0.05). Additionally, cPLA2α inhibitors significantly inhibit MIP-133-induced apoptosis in HCORN cells (P < 0.05). Subconjunctival injection of purified MIP-133 in Chinese hamster eyes induced cytopathic effects resulting in corneal ulceration. Animals infected with A. castellanii-laden contact lenses and treated with AACOCF3 and CAY10650, showed significantly less severe keratitis as compared with control animals. Collectively, the results indicate that cPLA2α is involved in MIP-133 induced apoptosis of corneal epithelial cells, polymorphonuclear neutrophil infiltration, and production of CXCL2. Moreover, cPLA2α inhibitors can be used as a therapeutic target in Acanthamoeba keratitis.

    Topics: Acanthamoeba castellanii; Acanthamoeba Keratitis; Animals; Apoptosis; Arachidonic Acids; Blotting, Western; Cells, Cultured; Chemokine CXCL2; Chromatography, High Pressure Liquid; Conjunctiva; Cricetinae; Cricetulus; Disease Models, Animal; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Epithelium, Corneal; Mannose; Organophosphonates; Phospholipases A2, Cytosolic; Protozoan Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Up-Regulation

2013
A novel role for calcium-independent phospholipase A in alpha-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation.
    The European journal of neuroscience, 2006, Volume: 23, Issue:2

    A considerable body of evidence indicates that phospholipase A(2) (PLA(2)) enzymes participate in long-term potentiation (LTP) of excitatory synaptic transmission. In the present study, we have undertaken experiments to identify which calcium-independent isoform of PLA(2) is involved in synaptic plasticity and to determine whether calcium-independent PLA(2) (iPLA(2)) contributes to post-synaptic processes of LTP. Using field recordings from rat CA1 hippocampal slices, we found that theta-burst stimulation (TBS)-induced LTP of field excitatory post-synaptic potentials (fEPSPs) was abolished by the iPLA(2) inhibitor bromoenol lactone (BEL) but not by the Ca(2+)-dependent PLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)). The ionic currents generated during TBS were not affected during iPLA(2) inhibition as BEL by itself had no effect on the magnitude of facilitation during burst responses. In addition, (R)-BEL, an enantioselective inhibitor of iPLA(2)gamma, precluded TBS-induced LTP, an action that was not replicated by the iPLA(2)beta inhibitors (S)-BEL and methyl arachidonyl fluorophosphonate. (R)-BEL was, however, ineffective on pre-established LTP. Finally, BEL also prevented the potentiation of fEPSPs elicited by brief exposure to 50 microM N-methyl-d-aspartate, as well as the associated up-regulation of alpha-amino-3-hydroxy-5-methylisoxazole-propionate (AMPA) receptor GluR1 subunit levels and the increase of (3)H-AMPA binding in crude synaptic fractions. Collectively, these results unravel a new role for iPLA(2)gamma in LTP, which appears to favor the insertion of AMPA receptors at post-synaptic membranes.

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arachidonic Acids; Blotting, Western; Calcium; Drug Interactions; Electric Stimulation; Gene Expression Regulation; Hippocampus; Immunoprecipitation; In Vitro Techniques; Long-Term Potentiation; Male; N-Methylaspartate; Naphthalenes; Neurons; Organophosphonates; Patch-Clamp Techniques; Phosphodiesterase Inhibitors; Phospholipases A; Protein Binding; Protein Isoforms; Pyrones; Rats; Receptors, AMPA; Synaptic Transmission; Time Factors

2006
Effects of pyrrophenone, an inhibitor of group IVA phospholipase A2, on eicosanoid and PAF biosynthesis in human neutrophils.
    British journal of pharmacology, 2006, Volume: 149, Issue:4

    The biosynthesis of leukotrienes (LT) and platelet-activating factor (PAF) involves the release of their respective precursors, arachidonic acid (AA) and lyso-PAF by the group IVA PLA2 (cPLA2alpha). This paper aims at characterizing the inhibitory properties of the cPLA2alpha inhibitor pyrrophenone on eicosanoids and PAF in human neutrophils (PMN).. Freshly isolated human PMN were activated with physiological and pharmacological agents (fMLP, PAF, exogenous AA, A23187 and thapsigargin) in presence and absence of the cPLA2alpha inhibitor pyrrophenone and biosynthesis of LT, PAF, and PGE2 was measured.. Pyrrophenone potently inhibited LT, PGE2 and PAF biosynthesis in PMN with IC50s in the range of 1-20 nM. These inhibitory effects of pyrrophenone were specific (the consequence of substrate deprivation), as shown by the reversal of inhibition by exogenous AA and lyso-PAF. Comparative assessment of pyrrophenone, methyl-arachidonoyl-fluoro-phosphonate (MAFP) and arachidonoyl-trifluoromethylketone (AACOCF3) demonstrated that pyrrophenone was more specific and 100-fold more potent than MAFP and AACOCF3 for the inhibition of LT biosynthesis in A23187-activated PMN. The inhibitory effect of pyrrophenone on LT biosynthesis was reversible as LT biosynthesis was recovered when pyrrophenone-treated PMN were washed with autologous plasma. No alteration of phospholipase D (PLD) activity in fMLP-activated PMN was observed with up to 10 microM pyrrophenone, suggesting that the cPLA2alpha inhibitor does not directly inhibit PLD.. Pyrrophenone is a more potent and specific cPLA2alpha inhibitor than MAFP and AACOCF3 and represents an excellent pharmacological tool to investigate the biosynthesis and the biological roles of eicosanoids and PAF.

    Topics: Arachidonic Acids; Dinoprostone; Dose-Response Relationship, Drug; Eicosanoids; Enzyme Inhibitors; Group IV Phospholipases A2; Humans; In Vitro Techniques; Leukotrienes; Neutrophils; Organophosphonates; Phospholipase D; Phospholipases A; Phospholipases A2; Platelet Activating Factor; Pyrrolidines

2006
Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A(2) inhibitor in rat hippocampal slices.
    British journal of pharmacology, 2001, Volume: 132, Issue:7

    1. We investigated the possible involvement of phospholipase A(2) (PLA(2)) and its products in long-term potentiation (LTP) in the CA1 neurotransmission of rat hippocampal slices. 2. Inhibitors of Ca(2+)-independent PLA(2) (iPLA(2)) prevented the induction of LTP without affecting the maintenance phase of LTP whereas Ca(2+)-dependent PLA(2) inhibitors were virtually ineffective, which suggests a pivotal role of iPLA(2) in the initiation of LTP. 3. We then investigated the effect of docosahexaenoic acid (DHA) and arachidonic acid (AA) on BEL (bromoenol lactone, an iPLA(2)-inhibitor) -impaired LTP, and found that either DHA or AA abolished the effect of BEL. However, DHA did not restore BEL-attenuated LTP when applied after the tetanus. DHA per se affected neither the induction nor maintenance of LTP. Linoleic acid had no effects, either. 4. These results suggest that DHA is crucial for the induction of LTP and that endogenously released DHA during tetanus is sufficient to trigger the formation of LTP.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Docosahexaenoic Acids; Dose-Response Relationship, Drug; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Long-Term Potentiation; Male; Naphthalenes; Organophosphonates; Phosphodiesterase Inhibitors; Phospholipases A; Pyrones; Rats; Rats, Wistar; Time Factors

2001
Secretory phospholipase A2-potentiated inducible nitric oxide synthase expression by macrophages requires NF-kappa B activation.
    Journal of immunology (Baltimore, Md. : 1950), 2000, Jun-15, Volume: 164, Issue:12

    The effect of secretory group II phospholipase A2 (sPLA2) on the expression of the inducible NO synthase (iNOS) and the production of NO by macrophages was investigated. sPLA2 by itself barely stimulated nitrite production and iNOS expression in Raw264.7 cells. However, in combination with LPS, the effects were synergistic. This potentiation was shown for sPLA2 enzymes from sPLA2-transfected stable cells or for purified sPLA2 from human synovial fluid. The effect of PLA2 on iNOS induction appears to be specific for the secretory type of PLA2. LPS-stimulated activation of iNOS was inhibited by the well-known selective inhibitors of sPLA2 such as 12-epi-scalaradial and p-bromophenacyl bromide. In contrast, the cytosolic PLA2-specific inhibitors methyl arachidonyl fluorophosphate and arachidonyltrifluoromethyl ketone did not affect LPS-induced nitrite production and iNOS expression. Moreover, when we transfected cDNA-encoding type II sPLA2, we observed that the sPLA2-transfected cells produced two times more nitrites than the empty vector or cytosolic PLA2-transfected cells. The sPLA2-potentiated iNOS expression was associated with the activation of NF-kappa B. We found that the NF-kappa B inhibitor pyrrolidinedithiocarbamate prevented nitrite production, iNOS induction, and mRNA accumulation by sPLA2 plus LPS in Raw264.7 cells. Furthermore, EMSA analysis of the activation of the NF-kappa B involved in iNOS induction demonstrated that pyrrolidinedithiocarbamate prevented the NF-kappa B binding by sPLA2 plus LPS. Our findings indicated that sPLA2, in the presence of LPS, is a potent activator of macrophages. It stimulates iNOS expression and nitrite production by a mechanism that requires the activation of NF-kappa B.

    Topics: Animals; Arachidonic Acids; Cell Line; Drug Synergism; Enzyme Inhibitors; Group II Phospholipases A2; Humans; Macrophages; Mice; NF-kappa B; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Organophosphonates; Phospholipases A; Phospholipases A2; RNA, Messenger; Sterols

2000