arachidonyltrifluoromethane and 7-7-dimethyl-5-8-eicosadienoic-acid

arachidonyltrifluoromethane has been researched along with 7-7-dimethyl-5-8-eicosadienoic-acid* in 3 studies

Other Studies

3 other study(ies) available for arachidonyltrifluoromethane and 7-7-dimethyl-5-8-eicosadienoic-acid

ArticleYear
Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA).
    The Journal of biological chemistry, 2008, Sep-12, Volume: 283, Issue:37

    Phospholipases A(2) (PLA(2)s) catalyze hydrolysis of fatty acids from the sn-2 position of phospholipids. Here we report the identification and characterization of a membrane-associated intracellular calcium-dependent, adipose-specific PLA(2) that we named AdPLA (adipose-specific phospholipase A(2)). We found that AdPLA was highly expressed specifically in white adipose tissue and was induced during preadipocyte differentiation into adipocytes. Clearance of AdPLA by immunoprecipitation significantly decreased PLA activity in white adipose tissue lysates but had no effect on liver lysates, where expression was hardly detectable. In characterizing AdPLA, we employed radiochemical assays with TLC analysis of the enzyme activity of lysates from COS-7 cells overexpressing AdPLA. For kinetic studies, we produced purified recombinant AdPLA for use in a lipoxidase-coupled spectrophotometric assay. AdPLA generated free fatty acid and lysophospholipid from phosphatidylcholine with a preference for hydrolysis at the sn-2 position. Although we found low but detectable lysophospholipase activity, AdPLA showed no significant activity against a variety of other lipid substrates. Calcium was found to activate AdPLA but was not essential for activity. Studies with known phospholipase inhibitors, including bromoenolactone, methyl arachidonyl fluorophosphate, AACOCF(3), 7,7-dimethyl-5,8-eicosadienoic acid, and thioetheramide, supported that AdPLA is a phospholipase. Mutational studies showed that His-23 and Cys-113 are critical for activity of AdPLA and suggested that AdPLA is likely a His/Cys PLA(2). Overall, although AdPLA is similar to other histidine phospholipases in pH and calcium dependence, AdPLA showed different characteristics in many regards, including predicted catalytic mechanism. AdPLA may therefore represent the first member of a new group of PLA(2)s, group XVI.

    Topics: 3T3 Cells; Adipocytes; Adipose Tissue; Amides; Animals; Arachidonic Acids; Chlorocebus aethiops; COS Cells; Fatty Acids, Unsaturated; Lysophospholipids; Mice; Models, Biological; Phosphatidylcholines; Phospholipases A2; Sulfides

2008
Hyposmotically induced amino acid release from the rat cerebral cortex: role of phospholipases and protein kinases.
    Brain research, 1999, Oct-09, Volume: 844, Issue:1-2

    In an evaluation of the contribution of swelling-induced amino acid release, through the regulatory volume decrease (RVD) process, to cerebral ischemic injury, studies of the role of phospholipases and protein kinases in the response to hyposmotic stress were undertaken using an in vivo rat cortical cup model. Hyposmotic stress induced significant releases of aspartate, glutamate, glycine, phosphoethanolamine, taurine and GABA from the rat cerebral cortex. Taurine release was most affected, exhibiting a greater than 9-fold increase during the hyposmotic stimulus. The phospholipase A2 (PLA2) inhibitors 4-bromophenacyl bromide (1 microM) and 7,7-dimethyleicosadienoic acid (5 microM) had no significant effects on hyposmotically induced amino acid release. AACOCF3 (50 microM), an inhibitor of cytosolic PLA2 decreased taurine release to 84% of DMSO controls. The release of the other amino acids was not affected. The phospholipase C inhibitor U73122 (5 microM) had no significant effects on amino acid release. The protein kinase C (PKC) inhibitor chelerythrine (5 microM) significantly reduced hyposmotically induced taurine release to 72% of saline controls but had no significant effects on the other amino acids. Stimulation of PKC with phorbol 12-myristate, 13-acetate (10 microM) did not significantly change taurine, glutamate, glycine or phosphethanolamine release. The releases of aspartate and GABA were enhanced 2 to 3 fold. Phorbol 12,13-didecanoate (10 microM), another potent stimulator of PKC, significantly increased taurine release to 122% of DMSO controls. The releases of aspartate, glutamate and glycine were enhanced 2.5 to 3.5 fold. Similarly, stimulation of protein kinase A with forskolin (100 microM) significantly increased taurine, aspartate, and glycine release 1.5- to 2-fold compared to DMSO controls. In summary, phospholipases may play a minor role in volume regulation. These studies also support the hypothesis that protein kinases play a modulatory role in the RVD response. The results show that although RVD may play a role, additional mechanisms, including phospholipase activation, must be involved in the ischemia-evoked release of excitotoxic amino acids.

    Topics: Acetophenones; Alanine; Amino Acids; Animals; Arachidonic Acids; Aspartic Acid; Brain Edema; Cerebral Cortex; Colforsin; Cyclic AMP-Dependent Protein Kinases; Dimethyl Sulfoxide; Enzyme Inhibitors; Estrenes; Ethanolamines; Fatty Acids, Unsaturated; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Hypotonic Solutions; Male; Osmotic Pressure; Phosphodiesterase Inhibitors; Phospholipases A; Phospholipases A2; Protein Kinase C; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Serine; Solvents; Taurine; Water-Electrolyte Balance

1999
Endothelin-induced prostacyclin production in rat aortic rings is mediated by protein kinase C.
    Prostaglandins, leukotrienes, and essential fatty acids, 1996, Volume: 55, Issue:5

    Endothelin (ET) is a vasoconstrictor peptide released from endothelial cells that is known to cause prostaglandin release. The mechanism remains unclear. To determine whether the protein kinase C (PKC) signaling pathway is stimulated by endothelin, we pretreated rat aortic rings with either PKC activator or inhibitors and measured the release of prostacyclin (PGI2) by radioimmunoassay. ET (10(-9) M) produced a 10-fold increase in PGI2 release. Pretreatment with 10(-9) M of three different PKC inhibitors, 1-(5-isoquinolinesulfonyl)piperazine(CL), staurosporine, and 1-(5-isoquinolinesulfonyltmethyl)piperazine (H7), blocked ET-induced PGI2 release. ET-induced PGI2 release was also blocked by pretreatment with inhibitors of either phospholipase A2 7,7-dimethyleicosadienoic acid or trifluoromethyl ketone analogue) (10(-9) M) or cyclooxygenase (indomethacin) (10(-9) M). We conclude that ET activates PKC, which activates phospholipase A2, which liberates arachidonic acid, which increases PGI2 production and release.

    Topics: Animals; Aorta; Arachidonic Acids; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Endothelins; Enzyme Inhibitors; Epoprostenol; Fatty Acids, Unsaturated; Indomethacin; Male; Phorbol 12,13-Dibutyrate; Phosphodiesterase Inhibitors; Protein Kinase C; Rats; Signal Transduction

1996