arachidonyl-dopamine and iodoresiniferatoxin

arachidonyl-dopamine has been researched along with iodoresiniferatoxin* in 2 studies

Other Studies

2 other study(ies) available for arachidonyl-dopamine and iodoresiniferatoxin

ArticleYear
Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death.
    Journal of neurochemistry, 2007, Volume: 102, Issue:3

    The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.

    Topics: Arachidonic Acids; Calcium; Calcium Signaling; Capsaicin; Cell Culture Techniques; Cell Death; Cell Line, Tumor; Cell Proliferation; Diterpenes; Dopamine; Endocannabinoids; Humans; Models, Biological; Neuroblastoma; Neurons; Norepinephrine; Polyunsaturated Alkamides; Recombinant Proteins; Synaptic Transmission; Transfection; TRPV Cation Channels; Up-Regulation

2007
Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide.
    British journal of pharmacology, 2004, Volume: 141, Issue:7

    1. Peripheral cannabinoids have been shown to suppress nociceptive neurotransmission in a number of behavioral and neurophysiological studies. It is not known, however, whether cannabinoids exert this action through direct interactions with nociceptors in the periphery and/or if other processes are involved. To gain a better understanding of the direct actions of cannabinoid-vanilloid agonists on sensory neurons, we examined the effects of these compounds on trigeminal ganglion (TG) neurons in vitro. 2. AEA (EC(50)=11.0 microM), NADA (EC(50)=857 nM) and arachidonyl-2-chloroethylamide ACEA (EC(50)=14.0 microM) each evoked calcitonin gene-related peptide (CGRP) release from TG neurons. The TRPV1 antagonists iodo-resiniferatoxin (I-RTX) and capsazepine (CPZ) each obtunded AEA-, NADA-, ACEA- and capsaicin (CAP)-evoked CGRP release with individually equivalent IC(50)'s for each of the compounds (I-RTX IC(50) range=2.6-4.0 nM; CPZ IC(50) range=523-1140 microM). 3. The pro-inflammatory mediator prostaglandin E(2) significantly increased the maximal effect of AEA-evoked CGRP release without altering the EC(50). AEA, ACEA and CAP stimulated cAMP accumulation in TG neurons in a calcium- and TRPV1-dependent fashion. Moreover, the protein kinase inhibitor staurosporine significantly inhibited AEA- and CAP-evoked CGRP release. 4. The pungency of AEA, NADA, ACEA and CAP in the rat eye-wipe assay was also assessed. Interestingly, when applied intraocularly, NADA or CAP each produced nocifensive responses, while AEA or ACEA did not. 5. Finally, the potential inhibitory effects of these cannabinoids on TG nociceptors were evaluated. Neither AEA nor ACEA decreased CAP-evoked CGRP release. Furthermore, neither of the cannabinoid receptor type 1 antagonists SR141716A nor AM251 had any impact on either basal or CAP-evoked CGRP release. AEA also did not inhibit 50 mM K(+)-evoked CGRP release and did not influence bradykinin-stimulated inositol phosphate accumulation. 6. We conclude that the major action of AEA, NADA and ACEA on TG neurons is excitatory, while, of these, only NADA is pungent. These findings are discussed in relation to our current understanding of interactions between the cannabinoid and vanilloid systems and nociceptive processing in the periphery.

    Topics: Aminobutyrates; Animals; Arachidonic Acid; Arachidonic Acids; Calcitonin Gene-Related Peptide; Calcium Channels; Capsaicin; Dinoprostone; Diterpenes; Dopamine; Endocannabinoids; Ganglia, Spinal; Male; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Drug; Staurosporine; Trigeminal Ganglion; TRPC Cation Channels; TRPV Cation Channels

2004