arachidonyl-dopamine has been researched along with capsazepine* in 8 studies
8 other study(ies) available for arachidonyl-dopamine and capsazepine
Article | Year |
---|---|
Endovanilloids are potential activators of the trigeminovascular nocisensor complex.
In the dura mater encephali a significant population of trigeminal afferents coexpress the nociceptive ion channel transient receptor potential vanilloid type 1 (TRPV1) receptor and calcitonin gene-related peptide (CGRP). Release of CGRP serves the central transmission of sensory information, initiates local tissue reactions and may also sensitize the nociceptive pathway. To reveal the possible activation of meningeal TRPV1 receptors by endogenously synthetized agonists, the effects of arachidonylethanolamide (anandamide) and N-arachidonoyl-dopamine (NADA) were studied on dural vascular reactions and meningeal CGRP release.. Changes in meningeal blood flow were measured with laser Doppler flowmetry in a rat open cranial window preparation following local dural applications of anandamide and NADA. The release of CGRP evoked by endovanilloids was measured with ELISA in an in vitro dura mater preparation.. Topical application of NADA induced a significant dose-dependent increase in meningeal blood flow that was markedly inhibited by pretreatments with the TRPV1 antagonist capsazepine, the CGRP antagonist CGRP8-37, or by prior systemic capsaicin desensitization. Administration of anandamide resulted in minor increases in meningeal blood flow that was turned into vasoconstriction at the higher concentration. In the in vitro dura mater preparation NADA evoked a significant increase in CGRP release. Cannabinoid CB1 receptors of CGRP releasing nerve fibers seem to counteract the TRPV1 agonistic effect of anandamide in a dose-dependent fashion, a result which is confirmed by the facilitating effect of CB1 receptor inhibition on CGRP release and its reversing effect on the blood flow.. The present findings demonstrate that endovanilloids are potential activators of meningeal TRPV1 receptors and, consequently the trigeminovascular nocisensor complex that may play a significant role in the pathophysiology of headaches. The results also suggest that prejunctional CB1 receptors may modulate meningeal vascular responses. Topics: Animals; Arachidonic Acids; Calcitonin Gene-Related Peptide; Cannabinoid Receptor Agonists; Capsaicin; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Dura Mater; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Laser-Doppler Flowmetry; Nociceptors; Peptide Fragments; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, Calcitonin Gene-Related Peptide; Regional Blood Flow; Trigeminal Nerve; TRPV Cation Channels | 2016 |
Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.
Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence in the same central terminations. This two-pool arrangement allows independent and opposite modulation of glutamate release by single lipid metabolites. Topics: Action Potentials; Analgesics; Animals; Arachidonic Acids; Benzoxazines; Brain Stem; Capsaicin; Dopamine; Excitatory Postsynaptic Potentials; Glutamic Acid; Hot Temperature; In Vitro Techniques; Male; Morpholines; Naphthalenes; Neurons; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Synaptic Transmission; TRPV Cation Channels | 2014 |
Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors.
The contributions of brain cannabinoid (CB) receptors, typically CB1 (CB type 1) receptors, to the behavioral effects of nicotine (NC) have been reported to involve brain transient receptor potential vanilloid 1 (TRPV1) receptors, and the activation of candidate endogenous TRPV1 ligands is expected to be therapeutically effective. In the present study, the effects of TRPV1 ligands with or without affinity for CB1 receptors were examined on NC-induced depression-like behavioral alterations in a mouse model in order to elucidate the "antidepressant-like" contributions of TRPV1 receptors against the NC-induced "depression" observed in various types of tobacco abuse.. Repeated subcutaneous NC treatments (NC group: 0.3 mg/kg, 4 days), like repeated immobilization stress (IM) (IM group: 10 min, 4 days), caused depression-like behavioral alterations in both the forced swimming (reduced swimming behaviors) and the tail suspension (increased immobility times) tests, at the 2 h time point after the last treatment. In both NC and IM groups, the TRPV1 agonists capsaicin (CP) and olvanil (OL) administered intraperitoneally provided significant antidepressant-like attenuation against these behavioral alterations, whereas the TRPV1 antagonist capsazepine (CZ) did not attenuate any depression-like behaviors. Furthermore, the endogenous TRPV1-agonistic CB1 agonists anandamide (AEA) and N-arachidonyldopamine (NADA) did not have any antidepressant-like effects. Nevertheless, a synthetic "hybrid" agonist of CB1 and TRPV1 receptors, arvanil (AR), caused significant antidepressant-like effects. The antidepressant-like effects of CP and OL were antagonized by the TRPV1 antagonist CZ. However, the antidepressant-like effects of AR were not antagonized by either CZ or the CB1 antagonist AM 251 (AM).. The antidepressant-like effects of TRPV1 agonists shown in the present study suggest a characteristic involvement of TRPV1 receptors in NC-induced depression-like behaviors, similar to those caused by IM. The strong antidepressant-like effects of the potent TRPV1 plus CB1 agonist AR, which has been reported to cause part of its TRPV1-mimetic and cannabimimetic effects presumably via non-TRPV1 or non-CB1 mechanisms support a contribution from other sites of action which may play a therapeutically important role in the treatment of NC abuse. Topics: Animals; Antidepressive Agents; Arachidonic Acids; Capsaicin; Depression; Dopamine; Endocannabinoids; Hindlimb Suspension; Ligands; Male; Mice; Mice, Inbred ICR; Nicotine; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Stress, Psychological; Swimming; TRPV Cation Channels | 2011 |
N-acyldopamines control striatal input terminals via novel ligand-gated cation channels.
Endogenous analogues of capsaicin, N-acyldopamines, were previously identified from striatal extracts, but the putative presynaptic role of their receptor, the TRPV(1)R (formerly: vanilloid or capsaicin receptor) in the caudate-putamen is unclear. We found that the endogenous TRPV(1)R agonists, N-arachidonoyldopamine (NADA) and oleoyldopamine (OLDA) with EC(50) values in the nanomolar range, as well as the synthetic TRPV(1)R activator 2-aminoethoxydiphenylborane (2APB), and palmytoyldopamine (PALDA, another endogenous N-acyldopamine inactive at the TRPV(1)R), but not capsaicin or other endogenous and synthetic cannabinoids, triggered a rapid Ca(2+) entry with the concomitant stimulation of glutamate and dopamine release. These effects persisted in the TRPV(1)R null-mutant mice, and were insensitive to antagonists of common ionotropic receptors, to several TRPV(1)R antagonists and to the absence of K(+). Furthermore, these N-acyldopamine receptors in glutamatergic and dopaminergic terminals are different based on their different sensitivity to anandamide, capsazepine and Gd(3+) at nanomolar concentrations. Altogether, novel ion channels instead of the TRPV(1)R mediate the presynaptic action of N-acyldopamines in the striatum of adult rodents. Topics: Animals; Arachidonic Acids; Boron Compounds; Capsaicin; Cations; Corpus Striatum; Dopamine; Endocannabinoids; Glutamic Acid; Ion Channels; Ligands; Male; Mice; Mice, Mutant Strains; Polyunsaturated Alkamides; Presynaptic Terminals; Rats; Rats, Wistar; Synaptosomes; TRPV Cation Channels | 2009 |
Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death.
The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells. Topics: Arachidonic Acids; Calcium; Calcium Signaling; Capsaicin; Cell Culture Techniques; Cell Death; Cell Line, Tumor; Cell Proliferation; Diterpenes; Dopamine; Endocannabinoids; Humans; Models, Biological; Neuroblastoma; Neurons; Norepinephrine; Polyunsaturated Alkamides; Recombinant Proteins; Synaptic Transmission; Transfection; TRPV Cation Channels; Up-Regulation | 2007 |
Increased depressor response to N-arachidonoyl-dopamine during high salt intake: role of the TRPV1 receptor.
This study was designed to test the hypothesis that the systemic administration of N-arachidonoyl-dopamine (NADA), an endovanilloid, causes a depressor effect via activation of transient receptor potential vanilloid type 1 (TRPV1) channels during high-salt intake.. Wistar rats were fed a normal (0.4%) or high (4%) sodium diet for 10 days, and arteries and veins were cannulated for measurement of mean arterial pressure (MAP) or injection of drugs and collection of plasma. Radioimmunoassay and western blot were used to determine the plasma calcitonin gene-related peptide (CGRP) level and TRPV1 protein content, respectively.. The NADA-induced dose-dependent decrease in MAP was greater in high-sodium than normal-treated rats, and was abolished by capsazepine, a selective TRPV1 antagonist, or CGRP8-37, a selective CGRP receptor antagonist, but not by SR141716A, a selective cannabinoid 1 receptor antagonist. Capsaicin, a selective TRPV1 receptor agonist, or CGRP dose-dependently decreased MAP in normal or high-sodium-treated rats, with a greater effect in the latter. Baseline and NADA-induced increases in plasma CGRP levels were higher in high-sodium than normal-treated rats. TRPV1 protein expression in mesenteric arteries was higher in high-sodium than normal-treated rats. In vitro, NADA caused a greater CGRP release from mesenteric arteries of high-sodium than normal-treated rats, which was blocked by capsazepine.. High sodium increases the sensitivity of blood pressure responses to NADA. The enhanced depressor effect induced by NADA during high-sodium intake is prevented by blockade of the TRPV1 or CGRP receptors, but not cannabinoid 1 receptor. High sodium upregulates mesenteric TRPV1 expression, and increases NADA-induced CGRP release in vitro and in vivo. Topics: Animals; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Capsaicin; Dopamine; Male; Peptide Fragments; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptors, Calcitonin Gene-Related Peptide; Rimonabant; Sodium Chloride, Dietary; TRPV Cation Channels | 2007 |
Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide.
1. Peripheral cannabinoids have been shown to suppress nociceptive neurotransmission in a number of behavioral and neurophysiological studies. It is not known, however, whether cannabinoids exert this action through direct interactions with nociceptors in the periphery and/or if other processes are involved. To gain a better understanding of the direct actions of cannabinoid-vanilloid agonists on sensory neurons, we examined the effects of these compounds on trigeminal ganglion (TG) neurons in vitro. 2. AEA (EC(50)=11.0 microM), NADA (EC(50)=857 nM) and arachidonyl-2-chloroethylamide ACEA (EC(50)=14.0 microM) each evoked calcitonin gene-related peptide (CGRP) release from TG neurons. The TRPV1 antagonists iodo-resiniferatoxin (I-RTX) and capsazepine (CPZ) each obtunded AEA-, NADA-, ACEA- and capsaicin (CAP)-evoked CGRP release with individually equivalent IC(50)'s for each of the compounds (I-RTX IC(50) range=2.6-4.0 nM; CPZ IC(50) range=523-1140 microM). 3. The pro-inflammatory mediator prostaglandin E(2) significantly increased the maximal effect of AEA-evoked CGRP release without altering the EC(50). AEA, ACEA and CAP stimulated cAMP accumulation in TG neurons in a calcium- and TRPV1-dependent fashion. Moreover, the protein kinase inhibitor staurosporine significantly inhibited AEA- and CAP-evoked CGRP release. 4. The pungency of AEA, NADA, ACEA and CAP in the rat eye-wipe assay was also assessed. Interestingly, when applied intraocularly, NADA or CAP each produced nocifensive responses, while AEA or ACEA did not. 5. Finally, the potential inhibitory effects of these cannabinoids on TG nociceptors were evaluated. Neither AEA nor ACEA decreased CAP-evoked CGRP release. Furthermore, neither of the cannabinoid receptor type 1 antagonists SR141716A nor AM251 had any impact on either basal or CAP-evoked CGRP release. AEA also did not inhibit 50 mM K(+)-evoked CGRP release and did not influence bradykinin-stimulated inositol phosphate accumulation. 6. We conclude that the major action of AEA, NADA and ACEA on TG neurons is excitatory, while, of these, only NADA is pungent. These findings are discussed in relation to our current understanding of interactions between the cannabinoid and vanilloid systems and nociceptive processing in the periphery. Topics: Aminobutyrates; Animals; Arachidonic Acid; Arachidonic Acids; Calcitonin Gene-Related Peptide; Calcium Channels; Capsaicin; Dinoprostone; Diterpenes; Dopamine; Endocannabinoids; Ganglia, Spinal; Male; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Drug; Staurosporine; Trigeminal Ganglion; TRPC Cation Channels; TRPV Cation Channels | 2004 |
TRPV1 and CB(1) receptor-mediated effects of the endovanilloid/endocannabinoid N-arachidonoyl-dopamine on primary afferent fibre and spinal cord neuronal responses in the rat.
N-arachidonoyl-dopamine (NADA) is an endogenous ligand at TRPV1 and CB(1) receptors, which are expressed on primary afferent nociceptors. The aim of this study was to determine contributions of proposed pronociceptive TRPV1 and antinociceptive CB(1) receptors to effects of peripheral NADA on primary afferent fibre function. Effects of NADA on primary afferent nociceptor function, determined by whole cell patch clamp and calcium imaging studies of adult dorsal root ganglion (DRG) neurons, were determined. Application of NADA (1 microm) to DRG neurons depolarized the resting membrane potential (Vm) from -58 +/- 1 to -44 +/- 3 mV (P < 0.00001) and evoked a significant increase (P < 0.0001) in intracellular calcium (74 +/- 11% of response to 60 mm KCl), compared to basal. The TRPV1 receptor antagonist capsazepine abolished NADA-evoked depolarization of Vm (P < 0.0001) and NADA-evoked calcium responses (P < 0.001), which were also blocked by the CB(1) receptor antagonist SR141716A (P < 0.001). Effects of NADA (1.5 microg and 5 microg/50 microL) on mechanically evoked responses of dorsal horn neurons in anaesthetized Sprague-Dawley rats were studied. Intraplantar injection of the higher dose of NADA (5 microg/50 microL) studied significantly inhibited innocuous (8, 10 g) mechanically evoked responses of dorsal horn neurons compared to vehicle, effects blocked by intraplantar injection of SR141716A. Higher weight (26-100 g) noxious-evoked responses of dorsal horn neurons were also significantly inhibited by NADA (5 microg/50 microL), effects blocked by intraplantar injection of the TRPV1 antagonist, iodo-resiniferatoxin. NADA has a complex pattern of effects on DRG neurons and primary afferent fibres, which is likely to reflect its dual site of action at TRPV1 and CB(1) receptors and the differential expression of these receptors by primary afferent fibres. Topics: Animals; Arachidonic Acids; Behavior, Animal; Calcium; Capsaicin; Cells, Cultured; Dopamine; Drug Interactions; Electrophysiology; Male; Membrane Potentials; Nerve Fibers; Pain Measurement; Physical Stimulation; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Drug; Rimonabant; Sensory Thresholds; Spinal Cord | 2004 |