arachidonic-acid-omega-9-hydroperoxide has been researched along with 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid* in 29 studies
1 review(s) available for arachidonic-acid-omega-9-hydroperoxide and 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid
Article | Year |
---|---|
Arachidonate 12-lipoxygenases. Catalytic properties and regulation of the enzyme gene.
Topics: Animals; Arachidonate 12-Lipoxygenase; Arachidonic Acid; Blood Platelets; Catalysis; Cloning, Molecular; Enzyme Induction; Feedback; Genes, Reporter; Humans; Isoenzymes; Leukocytes; Leukotrienes; Lipid Peroxides; Lipoxygenase Inhibitors; Mammals; Neoplasm Proteins; Organ Specificity; Recombinant Fusion Proteins; Substrate Specificity; Swine; Transcription, Genetic | 1997 |
28 other study(ies) available for arachidonic-acid-omega-9-hydroperoxide and 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid
Article | Year |
---|---|
Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid.
Human reticulocyte 15-lipoxygenase-1 (15-hLO-1) and human platelet 12-lipoxygenase (12-hLO) have been implicated in a number of diseases, with differences in their relative activity potentially playing a central role. In this work, we characterize the catalytic mechanism of these two enzymes with arachidonic acid (AA) as the substrate. Using variable-temperature kinetic isotope effects (KIE) and solvent isotope effects (SIE), we demonstrate that both k(cat)/K(M) and k(cat) for 15-hLO-1 and 12-hLO involve multiple rate-limiting steps that include a solvent-dependent step and hydrogen atom abstraction. A relatively low k(cat)/K(M) KIE of 8 was determined for 15-hLO-1, which increases to 18 upon the addition of the allosteric effector molecule, 12-hydroxyeicosatetraenoic acid (12-HETE), indicating a tunneling mechanism. Furthermore, the addition of 12-HETE lowers the observed k(cat)/K(M) SIE from 2.2 to 1.4, indicating that the rate-limiting contribution from a solvent sensitive step in the reaction mechanism of 15-hLO-1 has decreased, with a concomitant increase in the C-H bond abstraction contribution. Finally, the allosteric binding of 12-HETE to 15-hLO-1 decreases the K(M)[O(2)] for AA to 15 microM but increases the K(M)[O(2)] for linoleic acid (LA) to 22 microM, such that the k(cat)/K(M)[O(2)] values become similar for both substrates (approximately 0.3 s(-1) microM(-1)). Considering that the oxygen concentration in cancerous tissue can be less than 5 microM, this result may have cellular implications with respect to the substrate specificity of 15-hLO-1. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Allosteric Regulation; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Arachidonic Acid; Biocatalysis; Blood Platelets; Carbon Isotopes; Humans; Kinetics; Leukotrienes; Linoleic Acid; Linoleic Acids; Lipid Peroxides; Models, Chemical; Oxygen; Recombinant Proteins; Reticulocytes; Solvents; Temperature | 2009 |
Involvement of spinal lipoxygenase metabolites in hyperalgesia and opioid tolerance.
This study investigated role of spinal lipoxygenase metabolites in induction of hyperalgesia and development of opioid analgesic tolerance. In the rat, nociception was measured using formalin and tail-flick tests. Intrathecal administration of leukotriene receptor agonist (LTB4) augmented the second phase of the formalin response and marginally increased sensitivity to acute thermal stimulation in the tail-flick test, responses suppressed by 6-(6-(3R-hydroxy-1E,5Z-undecadien-1-yl)-2-pyridinyl)-1,5S-hexanediol (U75302), a leukotriene BLT receptor antagonist. Treatment with 15-hydroxyperoxyeicosatetranoic acid (HPETE) increased phase II formalin activity, but had no effect on tail-flick responses. 12-HPETE failed to produce an effect in either nociceptive test. In the second part of this study, chronic spinal morphine for 5 days produced progressive decline in morphine antinociception and loss in analgesic potency. These effects were attenuated by co-administration of morphine with selective and nonselective lipoxygenase inhibitors. These results suggest involvement of lipoxygenase metabolites in both pain modulation and induction of opioid tolerance at the spinal level. Topics: Analgesics, Opioid; Animals; Benzoquinones; Dose-Response Relationship, Drug; Drug Tolerance; Flavanones; Formaldehyde; Hindlimb; Hyperalgesia; Injections, Spinal; Leukotriene B4; Leukotrienes; Lipid Peroxides; Lipoxygenase; Lipoxygenase Inhibitors; Male; Masoprocol; Morphine; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Spinal Cord; Time Factors | 2004 |
Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response. Topics: Arachidonic Acid; Concanavalin A; Cytosol; Enzyme Activation; Group V Phospholipases A2; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Leukotrienes; Lipid Peroxides; Macrophage Activation; Macrophages; Paracrine Communication; Phospholipases A; Phospholipases A2; U937 Cells; Up-Regulation | 2003 |
Arachidonic acid-derived oxidation products initiate apoptosis in vascular smooth muscle cells.
The mechanism of arachidonic acid (AA)-induced apoptosis in vascular smooth muscle cells (VSMCs) was studied in the A-10 rat aortic smooth muscle cell line. Treatment of serum-deprived VSMCs with 50 microM AA for 24 h resulted in a loss of cell viability. The apoptotic effect of AA was characterized by annexin V binding, sub-G1 population of cells, cell shrinkage and chromatin condensation. AA-induced VSMC death was attenuated by antioxidants alpha-tocopherol and glutathione, the hydrogen peroxide (H2O2) scavenger catalase and by serum proteins, albumin and gamma globulins. Moreover, the AA peroxidation products, 12(S)-hydroperoxyeicosatetraenoic acid (HPETE), 15(S)-HPETE, 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) caused VSMC apoptosis. These data suggest an oxidative mechanism of AA-induced VSMC death. The apoptotic effect of AA was pH-dependent, being inhibited by extracellular alkalinization to pH 8.0. AA inhibited serum-stimulated cell cycle progression in quiescent cells, but not in proliferating cells. In conclusion, AA, through its oxidation products causes VSMC apoptosis. Antioxidants, by inhibiting VSMC apoptosis, may prevent consequent pathological events such as atherosclerotic plaque rupture. Topics: Aldehydes; Animals; Antioxidants; Aorta; Apoptosis; Arachidonic Acid; Cell Line; Cell Survival; Culture Media, Serum-Free; DNA; Leukotrienes; Lipid Peroxides; Malondialdehyde; Myocytes, Smooth Muscle; Rats | 2002 |
Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been identified in sensory neurons and a cDNA encoding the channel has been cloned recently. However, an endogenous activator of the receptor has not yet been found. In this study, we show that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons. Among them, 12- and 15-(S)-hydroperoxyeicosatetraenoic acids, 5- and 15-(S)-hydroxyeicosatetraenoic acids, and leukotriene B(4) possessed the highest potency. The eicosanoids also activated the cloned capsaicin receptor (VR1) expressed in HEK cells. Prostaglandins and unsaturated fatty acids failed to activate the channel. These results suggest a novel signaling mechanism underlying the pain sensory transduction. Topics: Animals; Capsaicin; Cell Line; Cells, Cultured; Dinoprostone; Eicosanoids; Ganglia, Spinal; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Ion Channel Gating; Leukotriene B4; Leukotrienes; Ligands; Lipid Peroxides; Lipoxygenase; Molecular Structure; Neurons, Afferent; Prostaglandin D2; Prostaglandin H2; Prostaglandins H; Rats; Receptors, Drug; Structure-Activity Relationship | 2000 |
Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap.
Electrospray ionization ion trap mass spectra of 5-, 12-, and 15-hydroperoxyeicosatetraenoic (HPETE), hydroxyeicosatetraenoic (HETE), and ketoeicosatetraenoic (KETE) acids were recorded. The HPETE were partly dehydrated to the corresponding KETE in the heated capillary of the mass spectrometer. 12-HPETE and 15-HPETE were also converted to KETE by collision-induced dissociation (CID) in the ion trap, whereas CID of 5-HPETE yielded little formation of 5-KETE. Subcellular fractions of bovine corneal epithelium were incubated with arachidonic acid (AA) and the metabolites were analyzed. 15-HETE and 12-HETE were consistently formed, whereas significant accumulation of HPETE and KETE was not detected. Biosynthesis of 12- and 15-HETE was quantified with octadeuterated 12-HETE and 15-HETE as internal standards. The average biosynthesis of 15-HETE and 12-HETE from 30 microM AA by the cytosol was 38 +/- 8 and below 3 ng/mg protein/30 min, respectively, which increased to 78 +/- 21 and 10 +/- 4 ng/mg protein/30 min in the presence of 1 mM free Ca2+. The microsomal biosynthesis was unaffected by Ca2+. The microsomes metabolized AA to 15-HETE as the main metabolite at a low protein concentration (0.3 mg/mL), whereas 12-HETE and 15-HETE were formed in a 2:1 ratio at a combined rate of 0.7 +/- 0.2 microg/mg protein/30 min at a high protein concentration (1.8 mg/mL). The level of 12-HETE in corneal epithelial cells was 50 +/- 13 pg/mg tissue, whereas the endogenous amount of 15-HETE was low or undetectable (<3 pg/mg tissue). Incubation of corneas for 20 min at 37 degrees C before processing selectively increased the amounts of 12-HETE in the epithelium fourfold to approximately 0.2 ng/mg tissue. We conclude that 12-HETE is the main endogenously formed lipoxygenase product of bovine corneal epithelium. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Cattle; Chromatography, Liquid; Epithelium, Corneal; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxides; Lipoxygenase; Mass Spectrometry; Subcellular Fractions | 2000 |
Interleukin-1 stimulates Jun N-terminal/stress-activated protein kinase by an arachidonate-dependent mechanism in mesangial cells.
We have studied interleukin-1 (IL-1)-stimulated signals and gene expression in mesangial cells (MCs) to identify molecular mechanisms of MC activation, a process characteristic of glomerular inflammation. The JNK1 pathway has been implicated in cell fate decisions, and IL-1 stimulates the Jun N-terminal/stress-activated protein kinases (JNK1/SAPK). However, early postreceptor mechanisms by which IL-1 activates these enzymes remain unclear. Free arachidonic acid (AA) activates several protein kinases, and because IL-1 rapidly stimulates phospholipase A2 (PLA2) activity release AA, IL-1-induced activation of JNK1/SAPK may be mediated by AA release.. MCs were grown from collagenase-treated glomeruli, and JNK/SAPK activity in MC lysates was determined using an immunocomplex kinase assay.. Treatment of MCs with IL-1 alpha induced a time-dependent increase in JNK1/SAPK kinase activity, assessed by phosphorylation of the activating transcription factor-2 (ATF-2). Using similar incubation conditions, IL-1 also increased [3H]AA release from MCs. Pretreatment of MCs with aristolochic acid, a PLA2 inhibitor, concordantly reduced IL-1-regulated [3H]AA release and JNK1/SAPK activity, suggesting that cytosolic AA in part mediates IL-1-induced JNK1/SAPK activation. Addition of AA stimulated JNK1/SAPK activity in a time- and concentration-dependent manner. This effect was AA specific, as only AA and its precursor linoleic acid stimulated JNK1/SAPK activity. Other fatty acids failed to activate JNK1/SAPK. Pretreatment of MCs with specific inhibitors of AA oxidation by cyclooxygenase, lipoxygenase, and cytochrome P-450 epoxygenase had no effect on either IL-1- or AA-induced JNK1/SAPK activation. Furthermore, stimulation of MCs with the exogenous cyclooxygenase-, lipoxygenase-, phosphodiesterase-, and epoxygenase-derived arachidonate metabolites, in contrast to AA itself, did not activate JNK1/SAPK.. We conclude that IL-1-stimulated AA release, in part, mediates stimulation of JNK1/SAPK activity and that AA activates JNK1/SAPK by a mechanism that does not require enzymatic oxygenation. JNK1 signaling pathway components may provide molecular switches that mediate structural rearrangements and biochemical processes characteristic of MC activation and could provide a novel target(s) for therapeutic intervention. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Aristolochic Acids; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Dinoprostone; Enzyme Activation; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glomerular Mesangium; Interleukin-1; JNK Mitogen-Activated Protein Kinases; Leukotrienes; Lipid Peroxides; Mitogen-Activated Protein Kinases; Nephritis; Phenanthrenes; Phosphodiesterase Inhibitors; Phospholipases A; Phospholipases A2; Rats; Signal Transduction; Stearic Acids; Tritium; Vasoconstrictor Agents | 1999 |
5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity.
The effects of 1 microM concentrations of arachidonic acid hydroperoxide (HPETES) products of 5-, 12- and 15-lipoxygenase on Na+, K(+)-ATPase activity were investigated in synaptosomal membrane preparations from rat cerebral cortex. 5-HPETE inhibited Na+, K(+)-ATPase activity by up to 67 %. In contrast, 12-HPETE and 15-HPETE did not inhibit Na+, K(+)-ATPase activity. In addition, neither 5-HETE or LTA4 inhibited Na+, K(+)-ATPase activity. Dose-response studies indicated that 5-HPETE was a potent (IC25 = 10(-8) M) inhibitor of Na+, K(+)-ATPase activity. These findings indicate that 5-HPETE inhibits Na+, K(+)-ATPase activity by a mechanism that is dependent on the hydroperoxide position and independent of further metabolism by 5-lipoxygenase. It is proposed that 5-HPETE production by 5-lipoxygenase and subsequent inhibition of neuronal Na+, K(+)-ATPase activity may be a mechansim for modulating synaptic transmission. Topics: Animals; Arachidonate Lipoxygenases; Cerebral Cortex; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Leukotriene A4; Leukotrienes; Lipid Peroxides; Male; Neurons; Rats; Rats, Sprague-Dawley; Sodium-Potassium-Exchanging ATPase; Synaptic Transmission; Synaptosomes | 1997 |
Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclo-oxygenase activation.
There is mounting evidence that lipid peroxides contribute to pathophysiological processes and can modulate cellular functions. The aim of the present study was to investigate the effects of lipid hydroperoxides on platelet aggregation and arachidonic acid (AA) metabolism. Human platelets, isolated from plasma, were incubated with subthreshold (i.e. non-aggregating) concentrations of AA in the absence or presence of hydroperoxyeicosatetraenoic acids (HPETEs). Although HPETEs alone had no effect on platelet function, HPETEs induced the aggregation of platelets co-incubated with non-aggregating concentrations of AA, HPETEs being more potent than non-eicosanoid peroxides. The priming effect of HPETEs on platelet aggregation was associated with an increased formation of cyclo-oxygenase metabolites, in particular thromboxane A2, and was abolished by aspirin, suggesting an activation of cyclo-oxygenase by HPETEs. It was not receptor-mediated because the 12-HPETE-induced enhancement of AA metabolism was sustained in the presence of SQ29, 548 or RGDS, which blocked the aggregation. These results indicate that physiologically relevant concentrations of HPETEs potentiate platelet aggregation, which appears to be mediated via a stimulation of cyclo-oxygenase activity. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Arachidonic Acid; Aspirin; Blood Platelets; Bridged Bicyclo Compounds, Heterocyclic; Deferoxamine; Enzyme Activation; Fatty Acids, Unsaturated; Humans; Hydrazines; Hydrogen Peroxide; Leukotrienes; Lipid Peroxides; Oligopeptides; Peroxides; Platelet Aggregation; Prostaglandin-Endoperoxide Synthases; tert-Butylhydroperoxide; Thromboxane B2; Vitamin E | 1997 |
Molecular and catalytic properties of mammalian lipoxygenases compared with soybean lipoxygenase-1.
Topics: Animals; Arachidonate 12-Lipoxygenase; Blood Platelets; Catalysis; Glycine max; Kinetics; Leukocytes; Leukotrienes; Lipid Peroxides; Lipoxygenase; Mammals; Substrate Specificity | 1997 |
Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative.
Two isozymes of arachidonate 12-lipoxygenase, platelet-type and leukocyte-type, which were distinguished by their substrate specificities and primary structures, were investigated with reference to 'suicide' inactivation. Upon reaction with arachidonic acid the leukocyte-type enzyme was inactivated rapidly during the catalysis, whereas the platelet-type enzyme did not show such a rapid inactivation. The two 12-lipoxygenase isozymes were incubated with various hydroperoxy and hydroxy products from arachidonic acid. (15S)-Hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) was found to be a unique substrate of the leukocyte-type 12-lipoxygenase as follows. (1) 15-HPETE was an active substrate for porcine leukocyte 12-lipoxygenase, and converted anaerobically to a 14,15-epoxy compound (14,15-leukotriene A4). (2) A rapid inactivation of the enzyme was observed within 2 min upon aerobic and anaerobic incubations with 15-HPETE. (3) 15-HPETE was rapidly incorporated into the enzyme in a nearly equimolar amount under both aerobic and anaerobic conditions. (4) Several findings suggested a covalent binding of 15-HPETE or its derivative to the enzyme. (5) Such a rapid and stoichiometric incorporation of 15-HPETE was not observed with the platelet-type 12-lipoxygenase. On the basis of these findings we presumed that 15-HPETE was transformed to 14,15-leukotriene A4, which was covalently bound to the leukocyte-type 12-lipoxygenase leading to the suicide inactivation of the enzyme. Topics: Animals; Arachidonate 12-Lipoxygenase; Arachidonic Acid; Leukocytes; Leukotrienes; Lipid Peroxides; Lipoxygenase Inhibitors; Multienzyme Complexes; Swine | 1996 |
Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis.
Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Apoptosis; Arachidonate 12-Lipoxygenase; Base Sequence; Cell Division; Cell Line; Cell Survival; Female; Homeostasis; Hydroxyeicosatetraenoic Acids; Leukotriene B4; Leukotriene C4; Leukotrienes; Lipid Peroxides; Lipoxins; Masoprocol; Molecular Sequence Data; Oligonucleotides, Antisense; Plasmids; Rats; Transfection | 1996 |
15-lipoxygenase metabolite(s) of arachidonic acid mediates adrenocorticotropin action in bovine adrenal steroidogenesis.
The acute activation of adrenal glucocorticoid synthesis by ACTH has long been believed to be mediated by cAMP as the major second messenger, although increases in cellular cAMP concentration have not been observed at low concentrations of ACTH. We found that steroidogenesis in bovine adrenal fasciculata-reticularis cells was activated by the addition of arachidonic acid or its 15-lipoxygenase metabolite, 15-hydroperoxyeicosatetraenoic acid. The cellular 15-lipoxygenase pathway was significantly activated by 1 pM ACTH, at which concentration no increase in cellular cAMP synthesis was observed. The 1 pM ACTH-induced stimulation of steroidogenesis was completely suppressed by a lipoxygenase inhibitor, AA-861. The stimulation was independent of the increase in cellular cAMP. These results show that the action of 1 pM ACTH on steroidogenesis may be mediated by the 15-lipoxygenase metabolite(s) as a solo second messenger. The addition of ACTH at concentrations higher than 10 pM increased both the 15-lipoxygenase activity and cellular cAMP synthesis. Under these conditions, the 15-lipoxygenase metabolite(s) and cAMP were shown to mediate the activation of steroidogenesis synergistically. The presence of a dual second messenger system could explain the stimulation of steroidogenesis by ACTH at physiological concentrations. Topics: Animals; Arachidonate 15-Lipoxygenase; Arachidonic Acids; Benzoquinones; Bucladesine; Cattle; Cells, Cultured; Cosyntropin; Cyclic AMP; Dihydrotestosterone; Enzyme Inhibitors; Indomethacin; Isoquinolines; Kinetics; Leukotrienes; Lipid Peroxides; Lipoxygenase Inhibitors; Masoprocol; Pregnenolone; Sulfonamides; Tetrahydronaphthalenes; Zona Fasciculata; Zona Reticularis | 1996 |
Role of hydroperoxyeicosatetraenoic acids in oxidative stress-induced activating protein 1 (AP-1) activity.
We have previously reported that hydrogen peroxide, an active oxygen species and a cellular oxidant, induces c-Fos and c-Jun mRNA expression and DNA synthesis in vascular smooth muscle cells and that these events require arachidonic acid release and metabolism through the lipoxygenase pathway. Here we have identified the eicosanoids that mediate the hydrogen peroxide-induced growth-related events in these cells. Hydrogen peroxide stimulated the production of 12- and 15-hydroperoxyeicosatetraenoic acids in vascular smooth muscle cells. Both 12- and 15-hydroperoxyeicosatetraenoic acids induced the expression of c-Fos and c-Jun protein and increased activating protein 1 (AP-1) activity, as measured by AP-1-DNA binding and AP-1-dependent human collagenase promoter-driven chloramphenicol acetyltransferase reporter gene transcription. Hydrogen peroxide and arachidonic acid also induced the expression of c-Fos and c-Jun protein and AP-1 activity. Nordihydroguaiaretic acid, an inhibitor of the lipoxygenase pathway, significantly inhibited both hydrogen peroxide and arachidonic acid-stimulated c-Fos and c-Jun protein expression and AP-1 activity. Together, these findings suggest that hydrogen peroxide induces the production of eicosanoids and that the eicosanoids are potential mediators of the oxidative stress-stimulated growth-related events in vascular smooth muscle cells. Topics: Animals; Aorta, Thoracic; Arachidonic Acid; Cells, Cultured; Chloramphenicol O-Acetyltransferase; Collagenases; Gene Expression; Genes, Reporter; Humans; Hydrogen Peroxide; Leukotrienes; Lipid Peroxides; Male; Masoprocol; Muscle, Smooth, Vascular; Oxidative Stress; Promoter Regions, Genetic; Proto-Oncogene Proteins c-fos; Proto-Oncogene Proteins c-jun; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Transcription Factor AP-1; Transcription, Genetic; Transfection | 1996 |
Effects of lipoxygenase products of arachidonate metabolism on parathyroid hormone secretion.
High extracellular Ca2+ (Ca2+ ec) stimulates the formation of inositol phosphates and diacylglycerol and activates phospholipase A2 in porcine parathyroid cells. Ca2+ ec action is also coupled to the formation of arachidonic acid, the precursor of both the cyclooxygenase and lipoxygenase (LO) pathways. We previously reported that LO pathway products might act as second messengers and play a part in regulating PTH secretion by Ca2+ ec. We have now investigated the effects of hydroxyeicosatetranoic acids (HETEs) on PTH secretion. Collagenase-dispersed porcine parathyroid cells were incubated in low [Ca2+] (0.5 mM, maximal stimulation) with or without HETEs for three 15-min periods. 12- and 15-HETEs inhibited PTH secretion in a dose-dependent manner from 10(-12) to 10(-9) M. Maximal inhibition was with 10(-9) M. Since 12- and 15-HETEs are the metabolic reduction products of 12- and 15-HPETEs, we also examined the effect of those precursors on PTH release. 12- and 15-hydroxyperoxyeicosatetranoic acids (HPETEs) were more potent inhibitors of PTH secretion. The threshold concentrations of both HPETEs that inhibited PTH release were lower than those for HETEs: 10(-9) M suppressed PTH secretion. This effect is comparable to that of high [Ca2+] (2 mM). This provides new evidence that products of 12-LO and 15-LO pathways are potent inhibitors of PTH secretion. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonic Acid; Hydrogen Peroxide; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxides; Lipoxygenase; Parathyroid Hormone; Structure-Activity Relationship; Swine; Time Factors | 1994 |
Arachidonic acid activates cation channels in bovine adrenal chromaffin cells.
Microscopic fluorescence analysis of fura-2-loaded bovine adrenal chromaffin cells demonstrates that approximately 70% of the cells responded to arachidonic acid in increasing the intracellular Ca2+ concentration. Because this increase was markedly less in the absence of external Ca2+, we examined the effect of arachidonic acid on Ca2+ influx electrophysiologically. Bath application of 10 microM arachidonic acid induced a long-lasting inward current when the cell was clamped at -50 mV. Other fatty acids, such as oleic acid, linoleic acid, eicosatrienoic acid, and eicosapentaenoic acid, were all ineffective. The current-voltage relationships suggest that arachidonic acid may activate voltage-insensitive channels. Arachidonic acid (> or = 2 microM) activated a single-channel current in the inside-out patch, even in the presence of inhibitors of cyclooxygenase and lipoxygenase, possibly suggesting that arachidonic acid could activate channels directly. The onset delay of the inward channel current in the outside-out patch configuration (54.2 +/- 63.5 s; mean +/- SD) was significantly shorter than that in the inside-out patch one (197.3 +/- 177.7 s). Washout of arachidonic acid decreased the probability of channel openings in the outside-out patch but not in the inside-out one. These results suggest that arachidonic acid activates channels reversibly from outside of the plasma membrane. The unitary conductance for Ca2+ of arachidonic acid-activated channel was approximately 17 pS. The arachidonic acid-activated channel was permeable to Ba2+, Ca2+, and Na+ but not to Cl-. The opening probability of the arachidonic acid-activated channel did not depend on membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adrenal Medulla; Animals; Arachidonic Acid; Calcium; Cations, Divalent; Cattle; Cells, Cultured; Dinoprostone; Electrophysiology; Ion Channels; Leukotrienes; Lipid Peroxides; Membrane Potentials; Tetrodotoxin | 1993 |
Measurement of lipid hydroperoxides in normal human blood plasma using HPLC-chemiluminescence linked to a diode array detector for measuring conjugated dienes.
A modification of a method using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection for the measurement of lipid hydroperoxides (LOOH) in human blood plasma has been developed. The system involves separation of different classes of LOOH using reverse-phase HPLC, and post-column detection of CL produced by isoluminol oxidation during the reaction of LOOH with microperoxidase. Complete ultra-violet absorption spectra are collected with an in-line diode-array detector and used to confirm a positive CL response due to LOOH, or other compounds, by the presence or absence, respectively, of the LOOH conjugated diene chromophore. We have used the method to investigate the stability of exogenous 15(S)-HPETE (a hydroperoxide of eicosatetraenoic acid) and conjugated dienes (of both 15(S)-HPETE and its reduced metabolite, 15(S)-HETE) in human plasma stored at various temperatures. A large and rapid loss of the hydroperoxide occurred in plasma incubated at 0 degrees C or 27 degrees C, whereas only a small reduction in the level of conjugated dienes was found. 15(S)-HPETE in PBS was stable under the same conditions, and zero time recovery of the hydroperoxide from denatured plasma and from buffer containing albumin was identical to that of fresh plasma. Our data suggest that the observed temperature-dependent loss of exogenous hydroperoxide from fresh plasma results from a combination of enzymatic degradation to the hydroxy derivative and binding to plasma albumin. 15(S)-HPETE was found to be stable in plasma stored at -70 degrees C for up to 2 weeks and in liquid nitrogen for 3 months in the presence of the antioxidants butylated hydroxytoluene (BHT) and desferal, with no significant loss of conjugated dienes. Topics: Antioxidants; Blood Preservation; Chromatography, High Pressure Liquid; Humans; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxides; Luminescent Measurements; Spectrophotometry, Ultraviolet; Temperature; Time Factors | 1991 |
Hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids induce sister chromatid exchanges in cultured mammalian cells.
Oxygen radical-induced genetic damage may be mediated by products of lipid peroxidation, in particular, arachidonic acid. Several isomeric hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids (HETEs and HPETEs), intermediates of arachidonic acid metabolism, were evaluated for their ability to cause sister chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells. Both HETEs and HPETEs induced SCEs in a dose-dependent fashion at concentrations of 5, 10, and 20 microM. At each concentration, HETEs were more effective in producing SCEs than the corresponding HPETEs. Each of the isomeric forms used were equally effective in producing genetic damage. Antioxidants (superoxide dismutase, catalase and mannitol) were protective suggesting an intermediate role for the hydroxyl radical. Iron chelation by desferrioxamine suppressed SCE induction by 45% and an additional 33% inhibition was observed upon the addition of the calcium chelator EGTA. Topics: Animals; Catalase; Cell Line; Cricetinae; Deferoxamine; Egtazic Acid; Free Radicals; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxidation; Lipid Peroxides; Mannitol; Sister Chromatid Exchange; Superoxide Dismutase | 1990 |
Modulation of renin synthesis by lipoxygenase products in cultured human mesangial cells.
Modulation of renin synthesis by lipoxygenase products has been studied in cultured human mesangial cells under basal conditions and in the presence of prostaglandin (PG) E2. Total renin and cyclic AMP productions were stimulated in a dose-dependent manner (0.1-10 microM) by PGE2. The stimulatory effect of PGE2 on renin production was inhibited by 12-hydroxyeicosatetraenoic acid (12-HETE) between 0.1 and 100 nM. Extracellular and intracellular renin were affected similarly. Neither basal and PGE2-dependent cyclic AMP nor basal cyclic GMP productions were modified. 15-Hydroxyeicosatetraenoic acid (15-HPETE), 12-hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-hydroperoxyeicosatetraenoic acid (15-HPETE) had the same effects as 12-HETE. Intracellular calcium concentration was not modified in the presence of 12-HETE. Since oleyl-2-acetylglycerol (OAG), an analog of diacylglycerol, also inhibited PGE2-stimulated renin production, it is hypothesized that the effect of the lipoxygenase products is mediated via protein kinase C stimulation. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Angiotensin II; Calcium; Cyclic AMP; Cyclic GMP; Diglycerides; Dinoprostone; Humans; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Kidney Cortex; Leukotrienes; Lipid Peroxides; Lipoxygenase; Renin | 1989 |
Conditions for the formation of the oxo derivatives of arachidonic acid from platelet 12-lipoxygenase and soybean 15-lipoxygenase.
Three carbonyl compounds derived from arachidonic acid have recently been characterized in human platelets, namely, 12-ketoeicosatetraenoic acid and two isomeric 12-oxododecatrienoic acids. The conditions for the synthesis of these compounds and for the synthesis of analogous products from soybean lipoxygenase, i.e., 15-ketoeicosatetraenoic acid and 15-oxopentadecatetraenoic acids, were compared with regard to the role of oxygen and fatty acid availability, and heme catalysis. Using platelet homogenates or soybean lipoxygenase and arachidonic acid as a substrate, it was found that the establishment of anaerobic conditions during the incubation was mandatory only for the synthesis of 15-oxopentadecatetraenoic acids. Anaerobic conditions, however, greatly increased the formation of 15-ketoeicosatetraenoic acid and, to a lesser extent, of 12-oxododecatrienoic acids. On the other hand, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) was transformed into 12-ketoeicosatetraenoic acid and 12-oxododecatrienoic acids by platelet homogenates or soybean lipoxygenase. This transformation was increased when the incubation was performed in anaerobic conditions and in the presence of a fatty acid substrate of the enzyme. These data suggest that oxygen deprivation and excess fatty acid could play a stimulatory role in the synthesis of 12-oxo compounds by platelets. Finally, we have compared the heme-catalyzed generation of the 12-oxo and 15-oxo derivatives from their hydroperoxide precursors: whereas 12-oxododecatrienoic acids and 12-ketoeicosatetraenoic acid were formed in the proportion of 8.5: 1.5 from 12-HPETE incubated with hematin (150 nM), 15-ketoeicosatetraenoic acid was the only carbonyl compound generated from 15-HPETE in the same conditions, emphasizing the unique reactivity of the 12-HPETE. Topics: Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Arachidonate Lipoxygenases; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Fatty Acids; Glycine max; Hemin; Humans; Leukotrienes; Lipid Peroxides; Oxygen; Plants | 1988 |
12-Hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-HPETE stimulate melatonin synthesis in rat pineals.
The role of arachidonic acid metabolites in norepinephrine (NE)-induced N-acetyltransferase (NAT) activity and melatonin release was examined from 6 h-incubations of rat pineal glands. A cyclooxygenase inhibitor, indomethacin (5 x 10(-8) - 5 x 10(-6) M) was ineffective on melatonin release, in the presence of absence of NE (5 x 10(-6) M) while a lipoxygenase inhibitor, nordihydroguaiaretic acid (5 x 10(-7) -5 x 10(-5) M) had an inhibitory effect. Among the lipoxygenase metabolites, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-HPETE stimulated both NAT activity and melatonin release in a dose-dependent manner, with a maximal effect occurring at 10(-6) M, while 5-HPETE or hydroxy derivatives of these compounds (12-HETE, 15-HETE and 5-HETE) were ineffective. These results indicate that 12-HPETE and 15-HPETE can be involved in NE-induced melatonin release. Topics: Animals; Leukotrienes; Lipid Peroxides; Male; Melatonin; Pineal Gland; Radioimmunoassay; Rats; Rats, Inbred Strains; Vasoconstrictor Agents | 1988 |
Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities.
The peroxidase activity of prostaglandin H (PGH) synthase catalyzes reduction of 5-phenyl-4-pentenyl hydroperoxide to 5-phenyl-4-pentenyl alcohol with a turnover number of approximately 8000 mol of 5-phenyl-4-pentenyl hydroperoxide/mol of enzyme/min. The kinetics and products of reaction establish PGH synthase as a classical heme peroxidase with catalytic efficiency similar to horseradish peroxidase. This suggests that the protein of PGH synthase evolved to facilitate peroxide heterolysis by the heme prosthetic group. Comparison of an extensive series of phenols, aromatic amines, beta-dicarbonyls, naturally occurring compounds, and nonsteroidal anti-inflammatory drugs indicates that considerable differences exist in their ability to act as reducing substrates. No correlation is observed between the ability of compounds to support peroxidatic hydroperoxide reduction and to inhibit cyclooxygenase. In addition, the resolved enantiomers of MK-410 and etodolac exhibit dramatic enantiospecific differences in their ability to inhibit cyclooxygenase but are equally potent as peroxidase-reducing substrates. This suggests that there are significant differences in the orientation of compounds at cyclooxygenase inhibitory sites and the peroxidase oxidation site(s). Comparison of 5-phenyl-4-pentenyl hydroperoxide reduction by PGH synthase and horseradish peroxidase reveals considerable differences in reducing substrate specificity. Both the cyclooxygenase and peroxidase activities of PGH synthase inactivate in the presence of low micromolar amounts of hydroperoxides and arachidonic acid. PGH synthase was most sensitive to arachidonic acid, which exhibited an I50 of 0.6 microM in the absence of all protective agents. Inactivation by hydroperoxides requires peroxidase turnover and can be prevented by reducing substrates. The I50 values for inactivation by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid are 4.0 and 92 microM, respectively, in the absence and presence of 500 microM phenol, a moderately good reducing substrate. The ability of compounds to protect against hydroperoxide-induced inactivation correlates directly with their ability to act as reducing substrates. Hydroquinone, an excellent reducing substrate, protected against hydroperoxide-induced inactivation when present in less than 3-fold molar excess over hydroperoxide. The presence of a highly efficient hydroperoxide-reducing activity appears absolutely essential for protection of the cyclooxygenase capaci Topics: Alkenes; Arachidonic Acid; Arachidonic Acids; Chemical Phenomena; Chemistry; Chromatography, High Pressure Liquid; Horseradish Peroxidase; Hydrogen Peroxide; Leukotrienes; Lipid Peroxides; Pentanols; Peroxidases; Peroxides; Prostaglandin-Endoperoxide Synthases; Substrate Specificity | 1987 |
The inhibitory role of 12- and 15-lipoxygenase products on renin release.
Release of arachidonic acid from membrane phospholipids is a limiting step in the synthesis of both cyclooxygenase products and lipoxygenase products. The direct effects of prostacyclin and some lipoxygenase products on renin release were studied using rat renal cortical slices. Prostacyclin, at concentrations of 10(-5) M, stimulated renin secretion, but this effect was short-lived. Leukotrienes or their precursor, 5-hydroperoxyeicosatetraenoic acid, did not affect basal renin release. In contrast, 10(-9) M 12-hydroperoxyeicosatetraenoic acid and 10(-8) M 12-hydroxyeicosatetraenoic acid were potent inhibitors of renin secretion. Similarly, 15-hydroperoxyeicosatetraenoic acid and its hydroxy derivative, 15-hydroxyeicosatetraenoic acid, at somewhat higher molar concentrations (10(-6) M) also reduced basal renin. These studies confirm prostacyclin as a potential renin secretagogue; however, its action in vitro is transient, probably because of its rapid degradation. Our studies provide new evidence that products of the 12-lipoxygenase and 15-lipoxygenase pathways, reported to be present in renal vascular tissue, are potent inhibitors of renin secretion and much more active on a molar basis on renin secretion than is prostacyclin. These studies suggest the potential presence of a dual system of stimulation and suppression that may regulate renin secretion in normal and clinical states. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Arachidonate Lipoxygenases; Arachidonic Acids; Epoprostenol; Hydroxyeicosatetraenoic Acids; Kidney Cortex; Leukotrienes; Lipid Peroxides; Male; Rats; Rats, Inbred Strains; Renin; SRS-A | 1987 |
Reactions of hydroperoxy-eicosatetraenoic acids with arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes.
Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonate 12-Lipoxygenase; Arachidonate 5-Lipoxygenase; Arachidonate Lipoxygenases; Arachidonic Acids; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Leukocytes; Leukotrienes; Lipid Peroxides; Substrate Specificity; Swine | 1986 |
Regulation of macrophage eicosanoid production by hydroperoxy-and hydroxy-eicosatetraenoic acids.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases. Topics: Acetylglucosaminidase; Animals; Arachidonic Acid; Arachidonic Acids; Cells, Cultured; Dinoprostone; Female; Hydroxyeicosatetraenoic Acids; Leukotrienes; Lipid Peroxides; Macrophages; Mice; Prostaglandins E; SRS-A; Zymosan | 1986 |
The importance of hydroperoxide activation for the detection and assay of mammalian 5-lipoxygenase.
Sulfhydryl reagents such as dithiothreitol stabilized human leukocyte 5-lipoxygenase (5-LO) during purification. During enzyme assay, however, these reagents led to irreproducible or unexpectedly low activity. This inconsistency in the assay was eliminated by inclusion of hydroperoxyeicosatetraenoic acids (1-5 microM) during the reaction which effected a 10-20-fold stimulation of 5-LO activity. Structural studies indicated that an intact hydroperoxy function, and a long-chain fatty acyl moiety were required for 5-LO stimulation. These data suggest that human leukocyte 5-LO is activated by hydroperoxy fatty acids, and that this results in a requirement for exogenous hydroperoxide in the presence of sulfhydryl reagents. Topics: Arachidonate Lipoxygenases; Arachidonic Acids; Enzyme Activation; Humans; Leukocytes; Leukotrienes; Lipid Peroxides; Lipoxygenase; Sulfhydryl Reagents | 1986 |
Effects of arachidonic acid hydroperoxides on vascular and non-vascular smooth muscle.
The omega-6 and omega-9 hydroperoxides of arachidonic acid (AA) caused dose-dependent contraction of rabbit aortic strip (RAS) and guinea pig ileum (GPI) at concentrations between 5 and 200 microM. At these concentrations, arachidonic acid had no effect in these preparations. The contractions could not be blocked by indomethacin, methysergide, phenoxybenzamine, propranolol, diphenhydramine, scopolamine, or the SRS-A antagonist FPL-55712, but were abolished by the calcium channel blocker nimodipine. In both tissues, the hydroperoxides initiated a sustained contraction. The onset of GPI contraction however, was much faster than the response of RAS to these hydroperoxides. 15-HPETE produced a more sustained contraction than 12-HPETE in both RAS and GPI. These results suggest that hydroperoxides generated from AA by the action of lipoxygenase can directly induce smooth muscle contraction and this effect is probably mediated through altering calcium fluxes in these smooth muscle preparations. Topics: Animals; Aorta, Thoracic; Arachidonic Acids; Guinea Pigs; Ileum; In Vitro Techniques; Leukotrienes; Lipid Peroxides; Male; Muscle Contraction; Muscle, Smooth; Muscle, Smooth, Vascular; Nicotinic Acids; Nimodipine; Peroxides; Rabbits; Vasoconstrictor Agents; Vasodilator Agents | 1981 |
Potent constriction of cat coronary arteries by hydroperoxides of arachidonic acid and its blockade by anti-inflammatory agents.
The omega-6 and omega-9 hydroperoxides of arachidonic acid caused dose-dependent constriction of cat coronary arteries in concentrations of 10(-8) to 10(-5) M. Their potency was comparable to that of prostaglandin (PG) E2, and PGF2 alpha and 100 times greater than that of arachidonic acid. The cyclooxygenase inhibitor, meclofenamate markedly reduced constriction caused by the hydroperoxides but potentiated constriction caused by the prostaglandins. The effects of the hydroperoxides were also reduced by indomethacin and dexamethasone but were unaffected by the thromboxane synthetase inhibitor imidazole. Since the hydroperoxides are not substrates for cyclooxygenase, it is suggested that they have a direct effect on the arteries which can be antagonized by anti-inflammatory drugs. Topics: Animals; Arachidonic Acids; Cats; Coronary Vessels; Dexamethasone; In Vitro Techniques; Leukotrienes; Lipid Peroxides; Meclofenamic Acid; ortho-Aminobenzoates; Perfusion; Peroxides; Prostaglandins E; Prostaglandins F; Vasoconstrictor Agents | 1979 |