ar-r-17779 and epibatidine

ar-r-17779 has been researched along with epibatidine* in 3 studies

Other Studies

3 other study(ies) available for ar-r-17779 and epibatidine

ArticleYear
Phantasmidine: an epibatidine congener from the ecuadorian poison frog Epipedobates anthonyi.
    Journal of natural products, 2010, Mar-26, Volume: 73, Issue:3

    The skin of the Ecuadorian poison frog Epipedobates anthonyi contains the potent nicotinic agonists epibatidine (1) and N-methylepibatidine (3). In addition, a condensed tetracyclic epibatidine congener has been identified with activity at nicotinic acetylcholine receptors, but different selectivity than epibatidine. This rigid tetracycle has been named phantasmidine (4). Phantasmidine has a molecular formula of C(11)H(11)N(2)OCl, shares a chloropyridine moiety with 1, and also contains furan, pyrrolidine, and cyclobutane rings. A combination of GC-MS and GC-FTIR analysis with on-column derivatization, 1D NMR spectroscopy with selective irradiation, and spectral simulation, along with 2D NMR, were used to elucidate the structure from a total sample of approximately 20 microg of HPLC-purified 4 and its corresponding acetamide (5). After synthesis, this novel rigid agonist may serve as a selective probe for beta4-containing nicotinic receptors and potentially lead to useful pharmaceuticals.

    Topics: Alkaloids; Amphibian Venoms; Animals; Bridged Bicyclo Compounds, Heterocyclic; Ecuador; Heterocyclic Compounds, Bridged-Ring; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Pyridines; Ranidae; Stereoisomerism

2010
Alpha-conotoxin Arenatus IB[V11L,V16D] [corrected] is a potent and selective antagonist at rat and human native alpha7 nicotinic acetylcholine receptors.
    The Journal of pharmacology and experimental therapeutics, 2008, Volume: 327, Issue:2

    A recently developed alpha-conotoxin, alpha-conotoxin Arenatus IB-[V11L,V16D] (alpha-CtxArIB[V11L,V16D]) [corrected], is a potent and selective competitive antagonist at rat recombinant alpha7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. alpha7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues, where they are implicated in a variety of functions. In this study, we evaluate this toxin at rat and human native nAChRs. Functional alpha7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea] in rat PC12 cells and human SH-SY5Y cells loaded with calcium indicators. alpha-CtxArIB[V11L,V16D] specifically inhibited alpha7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli, 5-I-A-85380 [5-iodo-3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride], nicotine, or KCl, that did not activate alpha7 nAChRs were unaffected. Human alpha7 nAChRs were also sensitive to alpha-CtxArIB[V11L, V16D]; acetylcholine-evoked currents in Xenopus laevis oocytes expressing human alpha7 nAChRs were inhibited by alpha-CtxArIB[V11L,V16D] (IC(50), 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the time course of recovery from blockade of rat alpha7 nAChRs in PC12 cells. alpha-CtxArIB[V11L,V16D] inhibited human native alpha7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 [(2)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin]-29-one] plus PNU-120596. Rat brain alpha7 nAChRs contribute to dopamine release from striatal minces; alpha-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that alpha-CtxArIB[V11L,V16D] selectively inhibits human and rat native alpha7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating alpha7 nAChR functions.

    Topics: alpha7 Nicotinic Acetylcholine Receptor; Animals; Bridged Bicyclo Compounds, Heterocyclic; Bridged-Ring Compounds; Calcium; Choline; Conotoxins; Dopamine; Humans; Isoxazoles; Male; Nicotinic Antagonists; PC12 Cells; Phenylurea Compounds; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Spiro Compounds

2008
Attentional effects of nicotinic agonists in rats.
    Neuropharmacology, 2003, Volume: 44, Issue:8

    Nicotine can increase stimulus detection, response rate and speed in the five-choice serial reaction time task, a rodent test of attention. In the present experiments, four other nicotinic agonists with different pharmacological profiles were compared in the same procedure. The response profile of epibatidine resembled that previously obtained with nicotine in that response accuracy was enhanced and omission errors and correct response latency decreased. ABT-418 transiently increased accuracy in the first 10 min of test sessions and reduced response latency. Isoarecolone caused a dose-related increase in accuracy, but had no effect on omissions or response latency. This absence of effects on response rate- or speed-related measures may be related to its previously reported reduced ability to release dopamine as compared with nicotine. The alpha7-agonist AR-R17779 was without effect on any measure, indicating that this receptor subtype may not mediate nicotinic effects on attention. Affinity constants of compounds, determined in competition binding assays targeting the alpha4beta2, alpha7, alpha3beta4 and alpha3beta2* nAChR subtypes, could not explain the differential behavioural effects observed. Differences in their functional efficacy at nAChR subtypes may instead be responsible. The finding that attentional performance and response rate and speed can be selectively modulated by nicotinic agonists is encouraging for the development of drugs with therapeutic properties similar to those of nicotine but with reduced unwanted effects.

    Topics: Animals; Arecoline; Attention; Binding, Competitive; Brain; Bridged Bicyclo Compounds, Heterocyclic; Bridged-Ring Compounds; Cell Line; In Vitro Techniques; Isoxazoles; Male; Nicotinic Agonists; Photic Stimulation; Pyridines; Pyrrolidines; Radioligand Assay; Rats; Spiro Compounds

2003