apyrase and fructose-1-6-diphosphate

apyrase has been researched along with fructose-1-6-diphosphate* in 2 studies

Other Studies

2 other study(ies) available for apyrase and fructose-1-6-diphosphate

ArticleYear
Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway.
    Scientific reports, 2015, Oct-19, Volume: 5

    Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5'-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA).

    Topics: 5'-Nucleotidase; Adenosine; Adenosine A2 Receptor Antagonists; Animals; Anti-Inflammatory Agents; Antigens, CD; Apyrase; Arthritis, Experimental; Cytokines; Disease Models, Animal; Extracellular Space; Fructosediphosphates; Glycolysis; Male; Metabolic Networks and Pathways; Mice; Receptor, Adenosine A2A; Rheumatic Fever; Signal Transduction

2015
Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.
    Biochemistry. Biokhimiia, 2008, Volume: 73, Issue:9

    Soluble NTPase, differing in its properties from known proteins exhibiting NTPase activity, was purified from bovine brain to homogeneity. The enzyme has pH optimum at 7.5 and shows absolute dependence on bivalent cations and broad substrate specificity towards nucleoside-5 -tri- and -diphosphates, characteristics of apyrases. The NTPase follows Michaelis-Menten kinetics in the range of investigated substrate concentrations, the apparent K(m) values for UTP, ITP, GTP, CTP, CDP, and ATP being 86, 25, 41, 150, 500, and 260 microM, respectively. According to gel-filtration and SDS-PAGE data, the molecular mass of the enzyme is 60 kD. The NTPase is localized in the cytosol fraction and expressed in different bovine organs and tissues. Total NTPase activity of extracts of bovine organs and tissues decreases in the following order: liver > heart > skeletal muscle > lung > brain > spleen > kidney ~ small intestine. The enzyme activity can be regulated by acetyl-CoA, alpha-ketoglutarate, and fructose-1,6-diphosphate acting as activators in physiological concentrations, whereas propionate exhibits an inhibitory effect.

    Topics: Acetyl Coenzyme A; Adenosine Triphosphate; Animals; Apyrase; Brain; Cations; Cattle; Cytidine Triphosphate; Cytosol; Fructosediphosphates; Guanosine Triphosphate; Inosine Triphosphate; Kidney; Kinetics; Liver; Nucleoside-Triphosphatase; Propionates; Substrate Specificity; Uridine Triphosphate

2008