apyrase has been researched along with ethylene* in 2 studies
2 other study(ies) available for apyrase and ethylene
Article | Year |
---|---|
Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules.
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPgammaS and ADPbetaS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5'-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPgammaS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway. Topics: Amino Acids, Cyclic; Apyrase; Cotton Fiber; DNA, Plant; Ethylenes; Gene Expression Regulation, Plant; Gossypium; Molecular Sequence Data; Ovule; Plant Proteins; Sequence Analysis, DNA; Thionucleotides | 2010 |
Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors.
The model legume Medicago truncatula contains at least six apyrase-like genes, five of which (MtAPY1;1, MtAPY1;2, MtAPY1;3, MtAPY1;4, and MtAPY1;5) are members of a legume-specific family, whereas a single gene (MtAPY2) has closer homologs in Arabidopsis. Phylogenetic analysis has revealed that the proteins encoded by these two plant gene families are more similar to yeast (Saccharomyces cerevisiae) GDA1 and to two proteins encoded by newly described mammalian genes (ENP5 and 6) than they are to mammalian CD39- and CD39-like proteins. Northern analyses and analyses of the frequencies of expressed sequence tags (ESTs) in different cDNA libraries suggest that in roots, leaves, and flowers, the more highly expressed genes are MtAPY1;3/MtAPY2, MtAPY1;3/MtAPY1;5 and MtAPY1;2/MtAPY1;3 respectively. In roots, at least four of the MtAPY1 genes are induced transiently within 3 to 6 h by a stress response that seems to be ethylene independent because it occurs after treatment with an ethylene synthesis inhibitor and also in the skl ethylene-insensitive mutant. This response also occurs in roots of the following symbiotic mutants: dmi1, dmi2, dmi3, nsp, hcl, pdl, lin, and skl. No evidence was obtained for a rapid, transient, and specific induction of the MtAPY genes in roots in response to rhizobia or rhizobial lipochitooligosaccharidic Nod factors. Thus, our data suggest that the apyrase-like genes, which in several legumes have been implicated to play a role in the legume-rhizobia symbiosis (with some members being described as early nodulin genes), are not regulated symbiotically by rhizobia in M. truncatula. Topics: Apyrase; Base Sequence; Blotting, Northern; Cloning, Molecular; DNA, Complementary; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Lipopolysaccharides; Medicago; Molecular Sequence Data; Mutation; Phylogeny; Plant Proteins; Plant Roots; Sequence Analysis, DNA; Sinorhizobium meliloti; Stress, Mechanical; Symbiosis | 2003 |