apyrase and 5--adenylyl-(beta-gamma-methylene)diphosphonate

apyrase has been researched along with 5--adenylyl-(beta-gamma-methylene)diphosphonate* in 2 studies

Other Studies

2 other study(ies) available for apyrase and 5--adenylyl-(beta-gamma-methylene)diphosphonate

ArticleYear
Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability.
    The Plant cell, 2005, Volume: 17, Issue:11

    ATP is a vital molecule used by living organisms as a universal source of energy required to drive the cogwheels of intracellular biochemical reactions necessary for growth and development. Animal cells release ATP to the extracellular milieu, where it functions as the primary signaling cue at the epicenter of a diverse range of physiological processes. Although recent findings revealed that intact plant tissues release ATP as well, there is no clearly defined physiological function of extracellular ATP in plants. Here, we show that extracellular ATP is essential for maintaining plant cell viability. Its removal by the cell-impermeant traps glucose-hexokinase and apyrase triggered death in both cell cultures and whole plants. Competitive exclusion of extracellular ATP from its binding sites by treatment with beta,gamma-methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, also resulted in death. The death response was observed in Arabidopsis thaliana, maize (Zea mays), bean (Phaseolus vulgaris), and tobacco (Nicotiana tabacum). Significantly, we discovered that fumonisin B1 (FB1) treatment of Arabidopsis triggered the depletion of extracellular ATP that preceded cell death and that exogenous ATP rescues Arabidopsis from FB1-induced death. These observations suggest that extracellular ATP suppresses a default death pathway in plants and that some forms of pathogen-induced cell death are mediated by the depletion of extracellular ATP.

    Topics: Adenosine Triphosphate; Apyrase; Arabidopsis; Cell Death; Cell Survival; Energy Metabolism; Extracellular Fluid; Fumonisins; Nicotiana; Phaseolus; Plant Diseases; Plants; Zea mays

2005
Role of extracellular ATP metabolism in regulation of platelet reactivity.
    The Journal of laboratory and clinical medicine, 2002, Volume: 140, Issue:3

    Extracellular adenosine triphosphate (ATP) regulates platelet reactivity by way of direct action on platelet purinergic receptors or by hydrolysis to adenosine diphosphate (ADP). Subsequent metabolism of ATP and ADP to adenosine monophosphate (AMP) and adenosine inhibits platelet aggregation. Endothelial cell membrane-bound ecto-ATP/ADPase (CD39, E-NTPDase1) is thought to be the main regulator of platelet responsiveness. However, the findings in studies of CD39-knockout mice imply that nucleotidase(s) in plasma regulates circulating adenine nucleotides levels. Understanding extracellular ATP metabolism by CD39 and plasma nucleotidases is therefore important. In this study, alpha-phosphorus 32- and gamma-phosphorus 32-labeled ATP were rapidly metabolized directly to AMP and pyrophosphate in human plasma at pH 7.4, suggesting the presence of pyrophosphatase/phosphodiesterase-like activity. A specific phosphodiesterase substrate, p-nitrophenol-5'-TMP (p-Nph-5'-TMP), was readily hydrolyzed in human plasma. The antiaggregatory action of beta,gamma-methylene-ATP (AMPPCP) (5 micromol/L) was blocked by DMPX, an adenosine-receptor antagonist, suggesting that in plasma, AMPPCP was metabolized to AMP and adenosine. Recombinant soluble CD39 (solCD39) was used to assess the role of CD39 in ATP metabolism. As little as 0.25 microg/mL of solCD39 inhibited ADP-induced platelet aggregation. However, in the presence of ADP-free ATP (10 micromol/L), solCD39 induced platelet aggregation in a dose-dependent manner. Because AMPPCP could not substitute for ATP in solCD39-stimulated platelet aggregation, it is likely that ADP formation from ATP was required. Endogenous CD39 may thus have a hemostatic function by promoting ADP formation from released ATP, in addition to its antiaggregatory properties. A plasma nucleotidase hydrolyzes ATP directly to AMP. This prevents ADP accumulation and generates adenosine, a potent, locally acting inhibitor of platelet reactivity. The presence of both endothelial CD39 and plasma nucleotidase appears to be important in the maintenance of normal hemostasis and prevention of excessive platelet responsiveness.

    Topics: Adenosine Diphosphate; Adenosine Triphosphatases; Adenosine Triphosphate; Antigens, CD; Apyrase; Blood Platelets; Dose-Response Relationship, Drug; Drug Antagonism; Humans; Hydrolysis; In Vitro Techniques; Phosphoric Diester Hydrolases; Phosphorus Radioisotopes; Platelet Aggregation; Theobromine

2002