apstatin has been researched along with omapatrilat* in 2 studies
2 other study(ies) available for apstatin and omapatrilat
Article | Year |
---|---|
Effect of bradykinin metabolism inhibitors on evoked hypotension in rats: rank efficacy of enzymes associated with bradykinin-mediated angioedema.
Inhibition of bradykinin metabolizing enzymes (BMEs) can cause acute angioedema, as demonstrated in a recent clinical trial in patients administered the antihypertensive, omapatrilat. However, the relative contribution of specific BMEs to this effect is unclear and confounded by the lack of a predictive pre-clinical model of angioedema.. Rats were instrumented to record blood pressure and heart rate; inhibitors were infused for 35 min and bradykinin was infused during the last 5 min to elicit hypotension, as a functional marker of circulating bradykinin and relative angioedema risk.. In the presence of omapatrilat bradykinin produced dose-dependent hypotension, an effect abolished by B(2) blockade. In the presence of lisinopril (ACE inhibitor), but not candoxatril (NEP inhibitor) or apstatin (APP inhibitor), bradykinin also elicited hypotension. Lisinopril-mediated hypotension was unchanged with concomitant blockade of NEP or NEP/DPPIV (candoxatril+A-899301). However, hypotension was enhanced upon concomitant blockade of APP and further intensified in the presence of NEP inhibition to values not different from omapatrilat alone.. We demonstrated that bradykinin is degraded in vivo with an enzyme rank-efficacy of ACE>APP>>NEP or DPPIV. These results suggest the effects of omapatrilat are mediated by inhibition of three BMEs, ACE/APP/NEP. However, dual inhibition of ACE/NEP or ACE/NEP/DPPIV elicits no increased risk of angioedema compared to ACE inhibition alone. Thus, novel BME inhibitors must display no activity against APP to avoid angioedema risk due to high prevalence of ACE inhibitor therapy in patients with diabetes and cardiovascular disease. Topics: Aminopeptidases; Angioedema; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Enzyme Inhibitors; Hypotension; Indans; Lisinopril; Male; Neprilysin; Peptides; Propionates; Pyridines; Rats; Rats, Sprague-Dawley; Thiazepines | 2008 |
Mechanism of vasopeptidase inhibitor-induced plasma extravasation: comparison of omapatrilat and the novel neutral endopeptidase 24.11/angiotensin-converting enzyme inhibitor GW796406.
We describe N-[(2S)-2-(mercaptomethyl)-3-methylbutanoyl]-4-(1H-pyrazol-1-yl)-L-phenylalanine (GW796406), a vasopeptidase inhibitor (VPI) that possessed approximately 3-fold selectivity for neutral endopeptidase 24.11 (NEP) versus angiotensin-converting enzyme (ACE) in in vitro assays using rat and human enzymes. In the same assays, omapatrilat, the most extensively studied VPI, displayed approximately 3-fold selectivity for ACE. The in vivo ACE and NEP inhibition profile and the liability of the compounds to increase plasma extravasation were compared at two (low and high) therapeutically equivalent intravenous doses in the rat. At the low dose, both agents inhibited ACE activity by approximately 85%. Consistent with their in vitro ACE/NEP selectivity, omapatrilat produced 49% inhibition, whereas GW796406 produced >95% inhibition of NEP. Neither compound increased plasma extravasation. When the low dose was administered to rats pretreated with the NEP inhibitor ecadotril to normalize NEP background to <5% of control, only omapatrilat significantly increased plasma extravasation. At the high dose, omapatrilat and GW796406 produced profound, nonselective inhibition of ACE (>90%) and NEP (>95%), and they significantly increased plasma extravasation. The activity of the agents as inhibitors of dipeptidylpeptidase IV (DPP IV) and aminopeptidase P (APP) was also investigated. Neither compound inhibited DPP IV. Interestingly, omapatrilat, but not GW796406, was a relatively potent inhibitor of APP (IC50 = 260 nM). We investigated whether APP inhibition increased the plasma extravasation liability of GW796406. The low dose of GW796406 administered with apstatin, an APP inhibitor, did not increase plasma extravasation. This finding inferred that APP inhibition is not involved in plasma extravasation in the rat and that APP inhibition does not explain the increased plasma extravasation produced by omapatrilat in NEP-inhibited rats. Topics: Aminopeptidases; Angiotensin-Converting Enzyme Inhibitors; Animals; Dipeptidyl Peptidase 4; Dose-Response Relationship, Drug; Humans; Inhibitory Concentration 50; Kidney; Lung; Male; Neprilysin; Peptides; Phenylalanine; Plasma; Pyrazoles; Pyridines; Rabbits; Rats; Rats, Sprague-Dawley; Rats, Wistar; Thiazepines | 2005 |