aphidicolin and thiazolyl-blue

aphidicolin has been researched along with thiazolyl-blue* in 2 studies

Other Studies

2 other study(ies) available for aphidicolin and thiazolyl-blue

ArticleYear
Flavopiridol potently induces small cell lung cancer apoptosis during S phase in a manner that involves early mitochondrial dysfunction.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2003, Oct-01, Volume: 9, Issue:12

    Accumulating evidence indicates that small cell lung cancer (SCLC) is defective in many of the regulatory mechanisms that control cell cycle progression. The purpose of this study was to determine the effects of flavopiridol, a pan-cyclin-dependent kinase inhibitor, on growth and apoptosis of SCLC cell lines.. Cell growth was monitored using 3-(4,5dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) and clonogenic assays. Induction of apoptosis was assessed using multiple assays, including flow cytometric determination of DNA content and mitochondrial membrane potential, terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL), and Western blot analysis of procaspase 3 and poly(ADP-ribose) polymerase cleavage.. Flavopiridol induced growth inhibition and cytotoxicity in multiple SCLC cell lines, with an IC(50) of 50-100 nM and an LD(50) of 150-200 nM in 72-h MTT assays. The cytotoxicity seen in the MTT assay proved to be apoptosis by several criteria. Interestingly, inhibition of caspase activation with the caspase inhibitor Boc-Asp(OMe)-CH(2)F reduced TUNEL labeling by 40% but did not have any effect on the loss of mitochondrial membrane potential (detected as early as 4 h after drug exposure) or cytotoxicity in MTT assays. These results suggest that the primary event in flavopiridol-induced apoptosis involves induction of mitochondrial dysfunction. Cells synchronized with aphidicolin at the G(1)-S border and treated with flavopiridol during S phase showed a marked increase in apoptosis compared with an asynchronous population or a population treated during G(2)-M. Despite the increased apoptosis, a significant proportion of synchronized cells proceeded through S, G(2)-M, and into G(1) phase in the presence of flavopiridol, demonstrating that a high-grade cell cycle arrest is not required for apoptosis. Cells synchronized at the G(1)-S border treated with a short exposure to flavopiridol also showed more than a 10-fold decrease in clonogenicity compared with asynchronous cells treated identically.. Taken together, these data demonstrate that flavopiridol potently and selectively induces SCLC apoptosis preferentially during S phase, in a manner that involves early mitochondrial dysfunction without a requirement for a high-grade block to cell cycle progression. Furthermore, clonogenicity data suggests that prior S phase synchronization could be a highly effective way of enhancing the efficacy of bolus or short infusions of flavopiridol in the clinical setting.

    Topics: Aphidicolin; Apoptosis; Blotting, Western; Carcinoma, Small Cell; Caspase 3; Caspases; Cell Division; Enzyme Inhibitors; Flavonoids; Flow Cytometry; Humans; In Situ Nick-End Labeling; Lung Neoplasms; Membrane Potentials; Mitochondria; Piperidines; Poly(ADP-ribose) Polymerases; S Phase; Tetrazolium Salts; Thiazoles; Tumor Cells, Cultured; Tumor Stem Cell Assay

2003
Cytotoxicity of aphidicolin and its derivatives against neuroblastoma cells in vitro: synergism with doxorubicin and vincristine.
    Anti-cancer drugs, 2000, Volume: 11, Issue:6

    Disseminated neuroblastoma diseases are still indicated by a poor outcome despite treatment regimens including radiation therapy and high-dose chemotherapy with stem cell rescue. Therefore, new substances and treatment regimens are of interest. Aphidicolin (APH), a tetracyclic diterpene antibiotic produced by Cephalosporium aphidicola, has a specific toxicity for neuroblastoma cells. Furthermore, it was shown to enhance the effects of X-ray radiation and chemotherapy on malignant cells. To find new substances, 20 APH derivatives were tested for their anti-neuroblastoma efficacy in vitro in UKF-NB-2 cells. Five derivatives had antitumoral activity in neuroblastoma cells. A relationship between the structure and the antitumoral efficacy showed that the hydroxyl groups at C-3 and C-18 are essential for the antitumoral effects. Furthermore, antitumoral effects of APH in combination with doxorubicin and vincristine, both part of commonly used treatment regimens for disseminated neuroblastoma diseases, were tested in the neuroblastoma cell line UKF-NB-2. APH was found to act synergistically with vincristine and synergistically to additive with doxorubicin depending on the molecular ratio of the substances in combination. This may offer the chance to use APH and its derivatives as additional tools in the treatment of neuroblastomas.

    Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Aphidicolin; Cell Survival; Doxorubicin; Drug Synergism; Enzyme Inhibitors; Humans; Molecular Structure; Neuroblastoma; Nucleic Acid Synthesis Inhibitors; Structure-Activity Relationship; Tetrazolium Salts; Thiazoles; Tumor Cells, Cultured; Vincristine

2000