aphidicolin has been researched along with rhizoxin* in 2 studies
1 review(s) available for aphidicolin and rhizoxin
Article | Year |
---|---|
Toward a Cancer Drug of Fungal Origin.
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted. Topics: Androstadienes; Animals; Antineoplastic Agents; Aphidicolin; Biological Products; Clinical Trials as Topic; Cyclohexanes; Diketopiperazines; Disease Models, Animal; Drug Design; Drug Resistance, Neoplasm; Fatty Acids, Unsaturated; Female; Fungi; Humans; Macrolides; Male; Mice; Neoplasms; Polycyclic Sesquiterpenes; Sesquiterpenes; Trichothecenes; Wortmannin | 2015 |
1 other study(ies) available for aphidicolin and rhizoxin
Article | Year |
---|---|
Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis.
Trypanosoma brucei has a single nucleus and a single kinetoplast (the mitochondrial genome). Each of these organelles has a distinct S phase, which is followed by a segregation period, prior to cell division. The segregation of the two genomes takes place in a specific temporal order by interaction with microtubule-based structures, the spindle for nuclear DNA and the flagellum basal bodies for the kinetoplast DNA. We used rhizoxin, the anti-microtubule agent and polymerisation inhibitor, or the nuclear DNA synthesis inhibitor aphidicolin, to interfere with cell cycle events in order to study how such events are co-ordinated. We show that T. brucei cytokinesis is not dependent upon either mitosis or nuclear DNA synthesis, suggesting that there are novel cell cycle checkpoints in this organism. Moreover, use of monoclonal antibodies to reveal cytoplasmic events such as basal body duplication shows that some aphidicolin treated cells appear to be in G(1) phase (1K1N) but have activated some cytoplasmic events characteristic of G(2) phase (basal body segregation). We discuss a possible dominant role in trypanosomes for kinetoplast/basal body segregation in control of later cell cycle events such as cytokinesis Topics: Animals; Aphidicolin; Cell Cycle; Cell Nucleus; DNA, Kinetoplast; Lactones; Macrolides; Mitochondria; Mitosis; Trypanosoma brucei brucei | 1999 |