aphidicolin has been researched along with adozelesin* in 4 studies
4 other study(ies) available for aphidicolin and adozelesin
Article | Year |
---|---|
Induction of DNA damage responses by adozelesin is S phase-specific and dependent on active replication forks.
Adozelesin is an alkylating minor groove DNA binder that is capable of rapidly inhibiting DNA replication in treated cells through a trans-acting mechanism and preferentially arrests cells in S phase. It has been shown previously that in cells treated with adozelesin, replication protein A (RPA) activity is deficient, and the middle subunit of RPA is hyperphosphorylated. The adozelesin-induced RPA hyperphosphorylation can be blocked by the replicative DNA polymerase inhibitor, aphidicolin, suggesting that adozelesin-triggered cellular DNA damage responses require active DNA replication forks. These data imply that cellular DNA damage responses to adozelesin treatment are preferentially induced in S phase. Here, we show that RPA hyperphosphorylation, RPA intranuclear focalization, and gamma-H2AX intranuclear focalization induced by adozelesin treatment are all dependent on DNA replication fork progression, and focalization is only induced in S phase cells. These findings are similar to those seen with the S phase-specific DNA-damaging agent, camptothecin. Conversely, all three DNA damage responses are independent of either S phase or replication fork progression when induced by treatment with the DNA strand scission agent, C-1027. Furthermore, we demonstrate that adozelesin-induced RPA and gamma-H2AX intranuclear foci appear to colocalize within the nuclei of S phase cells. Topics: Aminoglycosides; Anti-Bacterial Agents; Antibiotics, Antineoplastic; Antineoplastic Agents, Alkylating; Aphidicolin; Benzofurans; Camptothecin; Cyclohexanecarboxylic Acids; Cyclohexenes; DNA Damage; DNA Replication; Duocarmycins; Enediynes; HeLa Cells; Humans; Indoles; S Phase | 2003 |
Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents.
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression. Topics: Antineoplastic Agents, Alkylating; Aphidicolin; Ataxia Telangiectasia Mutated Proteins; Benzofurans; Cell Cycle Proteins; Checkpoint Kinase 1; Comet Assay; Cyclohexanecarboxylic Acids; Cyclohexenes; DNA Damage; DNA Replication; DNA-Binding Proteins; Duocarmycins; Enzyme Inhibitors; Fibroblasts; HeLa Cells; Histones; Humans; Hydroxyurea; Indoles; Methyl Methanesulfonate; Nucleic Acid Synthesis Inhibitors; Phosphorylation; Protein Kinases; Protein Serine-Threonine Kinases; Replication Protein A; S Phase; Tumor Suppressor Protein p53; Tumor Suppressor Proteins | 2003 |
Adozelesin triggers DNA damage response pathways and arrests SV40 DNA replication through replication protein A inactivation.
The cyclopropylpyrroloindole anti-cancer drug, adozelesin, binds to and alkylates DNA. Treatment of human cells with low levels of adozelesin results in potent inhibition of both cellular and simian virus 40 (SV40) DNA replication. Extracts were prepared from adozelesin-treated cells and shown to be deficient in their ability to support SV40 DNA replication in vitro. This effect on in vitro DNA replication was dependent on both the concentration of adozelesin used and the time of treatment but was not due to the presence of adozelesin in the in vitro assay. Adozelesin treatment of cells was shown to result in the following: induction of p53 protein levels, hyperphosphorylation of replication protein A (RPA), and disruption of the p53-RPA complex (but not disruption of the RPA-cdc2 complex), indicating that adozelesin treatment triggers cellular DNA damage response pathways. Interestingly, in vitro DNA replication could be rescued in extracts from adozelesin-treated cells by the addition of exogenous RPA. Therefore, whereas adozelesin and other anti-cancer therapeutics trigger common DNA damage response markers, adozelesin causes DNA replication arrest through a unique mechanism. The S phase checkpoint response triggered by adozelesin acts by inactivating RPA in some function essential for SV40 DNA replication. Topics: Antineoplastic Agents, Alkylating; Aphidicolin; Benzofurans; Cell Line, Transformed; Cyclohexanecarboxylic Acids; Cyclohexenes; DNA Replication; DNA-Binding Proteins; Duocarmycins; Humans; Indoles; Kinetics; Phosphorylation; Replication Protein A; S Phase; Simian virus 40; Tumor Suppressor Protein p53 | 2000 |
Synergistic and additive combinations of several antitumor drugs and other agents with the potent alkylating agent adozelesin.
Adozelesin is a highly potent alkylating agent that undergoes binding in the minor groove of double-stranded DNA (ds-DNA) at A-T-rich sequences followed by covalent bonding with N-3 of adenine in preferred sequences. On the basis of its high-potency, broad-spectrum in vivo antitumor activity and its unique mechanism of action, adozelesin has entered clinical trial. We report herein the cytotoxicity for Chinese hamster ovary (CHO) cells of several agents, including antitumor drugs, combined with adozelesin. The additive, synergistic, or antagonistic nature of the combined drug effect was determined for most combinations using the median-effect principle. The results show that in experiments using DNA- and RNA-synthesis inhibitors, prior treatment with the DNA inhibitor aphidicolin did not affect the lethality of adozelesin. Therefore, ongoing DNA synthesis is not needed for adozelesin cytotoxicity. Combination with the RNA inhibitor cordycepin also did not affect adozelesin cytotoxicity. In experiments with alkylating agents, combinations of adozelesin with melphalan or cisplatin were usually additive or slightly synergistic. Adozelesin-tetraplatin combinations were synergistic at several different ratios of the two drugs, and depending on the schedule of exposure to drug. In experiments using methylxanthines, adozelesin combined synergistically with noncytotoxic doses of caffeine or pentoxifylline and resulted in several logs of increase in adozelesin cytotoxicity. In experiments with hypomethylating agents, adozelesin combined synergistically with 5-azacytidine (5-aza-CR) and 5-aza-2'-deoxycytidine (5-aza-2'-CdR). Combinations of adozelesin with tetraplatin or 5-aza-2'-CdR were also tested against B16 melanoma cells in vitro and were found to be additive and synergistic, respectively. The synergistic cytotoxicity to CHO cells of adozelesin combinations with tetraplatin, 5-aza-CR, or pentoxifylline was not due to increased adozelesin uptake or increased alkylation of DNA by adozelesin. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Aphidicolin; Azacitidine; Benzofurans; Caffeine; Cell Survival; CHO Cells; Cisplatin; Cricetinae; Cricetulus; Cyclohexanecarboxylic Acids; Cyclohexenes; Decitabine; Deoxyadenosines; DNA; Dose-Response Relationship, Drug; Drug Synergism; Duocarmycins; Indoles; Melanoma, Experimental; Melphalan; Mutagens; Organoplatinum Compounds; Pentoxifylline; Tumor Cells, Cultured | 1995 |