ap-10 has been researched along with andrographolide* in 10 studies
10 other study(ies) available for ap-10 and andrographolide
Article | Year |
---|---|
Synthesis and evaluation of andrographolide derivatives as potent anti-osteoporosis agents in vitro and in vivo.
In this work, we found that 14-deoxy-11,12-didehydroandrographolide (2), a derivative of andrographolide (AP, 1), had greatly reduced cytotoxicity compared with AP and exhibited moderate anti-osteoclastogenesis activity. Thirty compounds were synthesized by introducing anti-osteoporosis chemotypes at C-19 of 2. Six of them exhibited stronger inhibition of osteoclastogenesis than AP. Of note, compound 12g displayed the most potent activity with IC Topics: Animals; Bone Resorption; Cell Differentiation; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Female; Mice; Mice, Inbred C57BL; Molecular Structure; Osteoclasts; Osteogenesis; Osteoporosis; RAW 264.7 Cells; Structure-Activity Relationship | 2021 |
From irreversible to reversible covalent inhibitors: Harnessing the andrographolide scaffold for anti-inflammatory action.
Covalent drugs with prolonged actions often show superior potency, yet integrated strategies for optimizing their structural and electronic features are lacking. Herein, we present our effort directed towards understanding the contribution of chemical reactivity to biological potency to rationally design new covalent inhibitors based on the ent-ladane andrographolide scaffold for anti-inflammatory action. Specifically, a series of andrographolide derivatives comprising various Michael acceptors was developed and their thiol reactivity was assayed under various chemical and biological conditions. The cell-based SAR studies permitted the assessment of the inhibitor efficacy in more complex systems, which were often limited in traditional covalent drug development using isolated proteins or peptides. Our in vitro study identified enone 17 as the most promising candidate which demonstrated potent anti-inflammatory activity and superior safety profiles as compared to the lead compound andrographolide. Its reversibility following a Michael addition reaction with biological thiols resulted in more predictable pharmacological responses. In addition, 17 exhibited good in vivo efficacy at doses as low as 0.3 mg/kg when tested in LPS-induced acute lung injury model. Given a good balance of chemical reactivity and biological potency, enone 17 potentially offers a new therapeutic option based on natural product chemistry for the management of inflammatory conditions. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Diterpenes; Drug Design; Mice; Sulfhydryl Compounds | 2020 |
Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and remains incurable. Currently, neuronal injury and synapse loss have been considered to be main features in the pathophysiology of AD. Thus, modulation of neuronal survival and neurite outgrowth may represent an efficient strategy for the treatment of AD. Based on the isolates from the traditional medicine Andrographis paniculata, a series of andrographolide analogues were prepared and evaluated for the neuroprotection and neurotrophic activity. Two compounds (3 and 12) could effectively inhibit LPS-induced NO production and iNOS expression as well as proinflammatory cytokines TNF-α and IL-6. Moreover, pretreatment with 3 and 12 could protect neurons against microglia-mediated neurotoxicity. Further, H Topics: Alzheimer Disease; Animals; Anti-Inflammatory Agents; Cell Line, Transformed; Diterpenes; Gene Expression; Hydrogen Peroxide; Interleukin-6; Lipopolysaccharides; Mice; Neurites; Neuronal Outgrowth; Neuroprotection; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Oxidopamine; PC12 Cells; Rats; Receptors, Muscarinic; Tumor Necrosis Factor-alpha | 2019 |
Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50.
Andrographolide (1) is a diterpenoid lactone with an α,β-unsaturated lactone group that inhibits NF-κB DNA binding. Andrographolide reacts with the nucleophilic Cys62 of NF-κB p50 through a Michael addition at the Δ(12(13)) exocylic double bond to form a covalent adduct. Using computer docking, site-directed mutagenesis, and mass spectrometry, the noncovalent interactions between andrographolide and additional binding site residues other than Cys62 were found to be essential for the covalent incorporation of andrographolide. Furthermore, the addition reaction of andrographolide on Cys62 was highly dependent on the redox conditions and on the vicinity of nearby, positively charged Arg residues in the conserved RxxRxR motif. The reaction mechanisms of several of the analogues were determined, showing that 14-deoxy-11,12-didehydroandrographolide (8) reacts with NF-κB p50 via a novel mechanism distinct from andrographolide. The noncovalent interaction and redox environment of the binding site should be considered, in addition to the electrophilicity, when designing a covalent drug. Analogues similar in structure appear to use distinct reaction mechanisms and may have very different cytotoxicities, e.g., compound 6. Topics: Andrographis; Anti-Asthmatic Agents; Cysteine; Diterpenes; Molecular Structure; NF-kappa B; Oxidation-Reduction | 2015 |
Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents.
Dehydroandrographolide and andrographolide, two natural diterpenoids isolated from Andrographis paniculata possessed activity against HBV DNA replication with IC50 values of 22.58 and 54.07μM and low SI values of 8.7 and 3.7 in our random assay. Consequently, 48 derivatives of dehydroandrographolide and andrographolide were synthesized and evaluated for their anti-HBV properties to yield a series of active derivatives with lower cytotoxicity, including 14 derivatives against HBsAg secretion, 19 derivatives against HBeAg secretion and 38 derivatives against HBV DNA replication. Interestingly, compound 4e could inhibit not only HBsAg and HBeAg secretions but also HBV DNA replication with SI values of 20.3, 125.0 and 104.9. Furthermore, the most active compound 2c with SI value higher than 165.1 inhibiting HBV DNA replication was revealed with the optimal logP value of 1.78 and logD values. Structure-activity relationships (SARs) of the derivatives were disclosed for guiding the future research toward the discovery of new anti-HBV drugs. Topics: Antiviral Agents; Biological Products; Diterpenes; DNA Replication; DNA, Viral; Hepatitis B virus; Structure-Activity Relationship; Virus Replication | 2014 |
Improved inhibitory activities against tumor-cell migration and invasion by 15-benzylidene substitution derivatives of andrographolide.
In the present study, andrographolide (Andro, 1) derivatives were screened to identify potent inhibitors against tumor-cell migration and invasion, and associated structure-activity relationships were studied. Compared to 1, compounds 8a-8d exhibited more potent activities against migration in SGC-7901, PC-3, A549, HT-29 and Ec109 cell lines. Improved activities against tumor-cell migration and invasion were proved to be associated with the down-regulation of MMPs. Topics: Cell Movement; Cell Proliferation; Diterpenes; Drug Screening Assays, Antitumor; HT29 Cells; Humans; Neoplasms; Structure-Activity Relationship | 2013 |
Protective role of 14-deoxy-11,12-didehydroandrographolide, a noncytotoxic analogue of andrographolide, in allergic airway inflammation.
Our group recently reported novel anti-inflammatory effects of andrographolide (2), a bioactive molecule isolated from Andrographis paniculata, in a mouse asthma model. However, 2 has been shown to possess cytotoxic activity. 14-Deoxy-11,12-didehydroandrographolide (1) is an analogue of 2 that can be isolated from A. paniculata. We hypothesized that 1 retains the anti-inflammatory effects for asthma but is devoid of cytotoxicity. In contrast to 2, 1 did not elicit any cytotoxic activity in A549 and BEAS-2B human lung epithelial cells and rat basophilic leukemia (RBL)-2H3 cells using a MTS assay. Compound 1 dose-dependently inhibited ovalbumin (OVA)-induced increases in total and eosinophil counts, IL-4, IL-5, and IL-13 levels in lavage fluid, and serum OVA-specific IgE level in a mouse asthma model. Compound 1 attenuated OVA-induced airway eosinophilia, mucus production, mast cell degranulation, pro-inflammatory biomarker expression in lung tissues, and airway hyper-responsiveness. This substance also blocked p65 nuclear translocation and DNA-binding activity in the OVA-challenged lung and in TNF-α-stimulated human lung epithelial cells. The present findings reveal for the first time that 1 retains the anti-inflammatory activities of 2 for asthma probably through the inhibition of NF-κB. 14-Deoxy-11,12-didehydroandrographolide (1) may be considered as a safer analogue of 2 for the potential treatment of asthma. Topics: Andrographis; Animals; Anti-Inflammatory Agents; Asthma; Disease Models, Animal; Diterpenes; Humans; Lung; Mice; NF-kappa B; Ovalbumin; Rats; Tumor Necrosis Factor-alpha | 2011 |
Synthesis of andrographolide derivatives: a new family of alpha-glucosidase inhibitors.
Andrographolide (1), the cytotoxic agent of the plant Andrographis paniculata, was subjected to semi-synthetic studies leading to a series of new derivatives, a novel family of glucosidase inhibitors. Nicotination of 3,19-hydroxyls in 15-alkylidene andrographolide derivatives (9) was favorable to alpha-glucosidase inhibition activity. Among them, 15-p-chlorobenzylidene-14-deoxy-11,12-didehydro-3,19-dinicotinateandrographolide (11c) was a very potent inhibitor against alpha-glucosidase with an IC50 value of 6 microM. However, all compounds concerned for beta-glucosidase showed no inhibition. All compounds synthesized were characterized by the analysis of NMR, IR, HRMS spectra and the stereochemistry of 2 was confirmed by X-ray analysis. Topics: Andrographis; Diterpenes; Enzyme Inhibitors; Glycoside Hydrolase Inhibitors; Magnetic Resonance Spectroscopy; Mass Spectrometry; Models, Molecular; Spectrophotometry, Infrared; Stereoisomerism | 2007 |
Studies on the novel alpha-glucosidase inhibitory activity and structure-activity relationships for andrographolide analogues.
A series of analogues of andrographolide were synthesized and evaluated as novel alpha-glucosidase inhibitors. Among them compound 23, 15-p-methoxylbenzylidene 14-deoxy-11,12-didehydroandrographolide, was a potent inhibitor against alpha-glucosidase whose IC(50) value was 16microM. The structure-activity relationships were also discussed. Topics: Animals; Diterpenes; Enzyme Inhibitors; Glycoside Hydrolase Inhibitors; Rats; Structure-Activity Relationship | 2006 |
Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents.
Andrographolide 1, the cytotoxic agent of the plant Andrographis paniculata was subjected to semi-synthetic studies leading to the preparation of a number of potent and novel analogues. Of the analogues synthesized, while 8,17-epoxy andrographolide 6 retained the cytotoxic activity of 1, ester derivatives of 6 exhibited considerable improvement in activity. Lower activity was observed when the epoxy moiety in the triacetate 9, derived from 6 was modified. Synthesis and structure-activity relationships are discussed. Topics: Andrographis; Animals; Antineoplastic Agents; Cell Line, Tumor; Crystallography, X-Ray; Diterpenes; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Mice; Structure-Activity Relationship | 2004 |