anticodon has been researched along with agmatidine* in 2 studies
1 review(s) available for anticodon and agmatidine
Article | Year |
---|---|
Convergent evolution of AUA decoding in bacteria and archaea.
Deciphering AUA codons is a difficult task for organisms, because AUA and AUG specify isoleucine (Ile) and methionine (Met), separately. Each of the other purine-ending sense co-don sets (NNR) specifies a single amino acid in the universal genetic code. In bacteria and archaea, the cytidine derivatives, 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm(2)C or agmatidine), respectively, are found at the first letter of the anticodon of tRNA(Ile) responsible for AUA codons. These modifications prevent base pairing with G of the third letter of AUG codon, and enable tRNA(Ile) to decipher AUA codon specifically. In addition, these modifications confer a charging ability of tRNA(Ile) with Ile. Despite their similar chemical structures, L and agm(2)C are synthesized by distinctive mechanisms and catalyzed by different classes of enzymes, implying that the analogous decoding systems for AUA codons were established by convergent evolution after the phylogenic split between bacteria and archaea-eukaryotes lineages following divergence from the last universal common ancestor (LUCA). Topics: Anticodon; Archaea; Bacteria; Biological Evolution; Codon; Cytidine; Genetic Code; Isoleucine; Lysine; Methionine; Models, Molecular; Phylogeny; Protein Biosynthesis; Pyrimidine Nucleosides; Ribosomes; RNA, Transfer | 2014 |
1 other study(ies) available for anticodon and agmatidine
Article | Year |
---|---|
Structural basis of tRNA agmatinylation essential for AUA codon decoding.
The cytidine at the first position of the anticodon (C34) in the AUA codon-specific archaeal tRNA(Ile2) is modified to 2-agmatinylcytidine (agm(2)C or agmatidine), an agmatine-conjugated cytidine derivative, which is crucial for the precise decoding of the genetic code. Agm(2)C is synthesized by tRNA(Ile)-agm(2)C synthetase (TiaS) in an ATP-dependent manner. Here we present the crystal structures of the Archaeoglobus fulgidus TiaS-tRNA(Ile2) complexed with ATP, or with AMPCPP and agmatine, revealing a previously unknown kinase module required for activating C34 by phosphorylation, and showing the molecular mechanism by which TiaS discriminates between tRNA(Ile2) and tRNA(Met). In the TiaS-tRNA(Ile2)-ATP complex, C34 is trapped within a pocket far away from the ATP-binding site. In the agmatine-containing crystals, C34 is located near the AMPCPP γ-phosphate in the kinase module, demonstrating that agmatine is essential for placing C34 in the active site. These observations also provide the structural dynamics for agm(2)C formation. Topics: Adenosine Triphosphate; Anticodon; Archaeal Proteins; Archaeoglobus fulgidus; Crystallography, X-Ray; Cytidine; Isoleucine-tRNA Ligase; Macromolecular Substances; Models, Molecular; Molecular Sequence Data; Nucleic Acid Conformation; Protein Conformation; RNA, Archaeal; RNA, Transfer, Ile | 2011 |