anoplin and 6-carboxyfluorescein

anoplin has been researched along with 6-carboxyfluorescein* in 2 studies

Other Studies

2 other study(ies) available for anoplin and 6-carboxyfluorescein

ArticleYear
Enhancing membrane disruption by targeting and multivalent presentation of antimicrobial peptides.
    Biochimica et biophysica acta, 2012, Volume: 1818, Issue:9

    In order to enhance the membrane disruption of antimicrobial peptides both targeting and multivalent presentation approaches were explored. The antimicrobial peptides anoplin and temporin L were conjugated via click chemistry to vancomycin and to di- and tetravalent dendrimers. The vancomycin unit led to enhanced membrane disruption of large unilamellar vesicles (LUVs) displaying the vancomycin target lipid II, but only for temporin L and not for anoplin. The multivalent presentation led to enhanced LUV membrane disruption in the case of anoplin but not for temporin L.

    Topics: Antimicrobial Cationic Peptides; Biophysics; Chromatography, High Pressure Liquid; Drug Design; Fluoresceins; Humans; Lipids; Models, Chemical; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Proteins; Vancomycin; Wasp Venoms

2012
Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin.
    Biochimica et biophysica acta, 2011, Volume: 1808, Issue:6

    Isolated from the venom sac of solitary spider wasp, Anoplius samariensis, anoplin is the smallest linear α-helical antimicrobial peptide found naturally with broad spectrum activity against both Gram-positive and Gram-negative bacteria, and little hemolytic activity toward human erythrocytes. Deamidation was found to decrease the peptide's antibacterial properties. In the present work, interactions of amidated (Ano-NH2) and deamidated (Ano-OH) forms of anoplin as well as Ano-NH2 composed of all D-amino acids (D-Ano-NH2) with model cell membranes were investigated by means of Langmuir Blodgett (LB) technique, atomic force microscopy (AFM), X-ray photoemission electron microscopy (X-PEEM) and carboxyfluorescein leakage assay in order to gain a better understanding of the effect of these peptide modifications on membrane binding and lytic properties. According to LB, all three peptides form stable monolayers at the air/water interface with Ano-NH2 occupying a slightly greater area per molecule than Ano-OH. All three forms of the peptide interact preferentially with anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), rather than zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. Peptides form nanoscale clusters in zwitterionic but not in anionic monolayers. Finally, membrane lytic activity of all derivatives was found to depend strongly on membrane composition and lipid/peptide ratio. The results suggest that amidated forms of peptides are likely to possess higher membrane binding affinity due to the increased charge.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Amides; Amino Acid Substitution; Animals; Antimicrobial Cationic Peptides; Bacillus subtilis; Cell Membrane; Escherichia coli; Fluoresceins; Hemolysis; Humans; Hymenoptera; Lipid Bilayers; Microscopy, Atomic Force; Microscopy, Electron; Phosphatidylglycerols; Protein Binding; Wasp Venoms

2011