anisomycin and isospaglumic-acid

anisomycin has been researched along with isospaglumic-acid* in 2 studies

Other Studies

2 other study(ies) available for anisomycin and isospaglumic-acid

ArticleYear
Group II mGluR-induced long term depression in the dentate gyrus in vivo is NMDA receptor-independent and does not require protein synthesis.
    Neuropharmacology, 2005, Volume: 49 Suppl 1

    Long term depression (LTD) can be induced by low frequency stimulation (LFS) as well as by agonist activation of neurotransmitter receptors. Group II metabotropic glutamate receptors (mGluRs) play an essential role in the regulation of electrically-induced LTD in the hippocampus in vivo: LTD is inhibited by antagonists, and enhanced by agonists of group II mGluRs. Here we investigated induction of LTD by activation of group II mGluRs as well as the cellular mechanisms which might mediate group II mGluR-induced LTD. Rats were implanted with electrodes to enable chronic measurement of evoked potentials from medial perforant path-dentate gyrus synapses. Drug application was made through a cannula implanted into the ipsilateral cerebral ventricle. LTD could be induced by agonist activation of either group II mGluRs, or the group II mGluR subtype, mGluR3. Both, group II mGluR-induced LTD and mGluR3-induced LTD were not abolished by mRNA/protein synthesis inhibition. Furthermore, mGluR3-induced LTD was not inhibited by NMDA receptor antagonists or altered by L-type voltage-gated calcium channel blockers. Our data suggest that sole activation of group II mGluRs can mediate LTD in vivo. Intriguingly, this form of LTD is not dependent on protein synthesis or activation of NMDA receptors.

    Topics: 2-Amino-5-phosphonovalerate; Analysis of Variance; Animals; Anisomycin; Calcium Channel Blockers; Dentate Gyrus; Dipeptides; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Functional Laterality; Glycine; Long-Term Synaptic Depression; Male; Neuroprotective Agents; Protein Synthesis Inhibitors; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Time Factors; Verapamil

2005
Immunohistochemistry and biosynthesis of N-acetylaspartylglutamate in spinal sensory ganglia.
    Journal of neurochemistry, 1987, Volume: 49, Issue:5

    N-Acetylaspartylglutamate (NAAG) is a nervous system-specific dipeptide which has been implicated in chemical neurotransmission. Antisera were prepared against NAAG in order to study its cellular distribution. When these antisera were applied to tissue sections of rat spinal sensory ganglia, NAAG-like immunoreactivity was detected within a subpopulation of relatively large neuronal cell bodies in cervical, lumbar, and thoracic ganglia. In order to confirm the presence of NAAG within these neurons, the dipeptide was extracted and purified from spinal ganglia using high-performance liquid chromatography and its composition confirmed by amino acid analysis. Further, the biosynthesis of NAAG was studied in vitro by following the incorporation of either [3H]glutamine or [3H]glutamate into the glutamate residue of the purified dipeptide. [3H]Aspartate was not incorporated efficiently into NAAG under these conditions, suggesting a precursor role for the large N-acetylaspartate pool. The incorporation of radiolabeled amino acids into newly synthesized NAAG by spinal sensory ganglia was not inhibited by incubation of the cells with anisomycin or cycloheximide at concentrations which significantly inhibited protein synthesis. These data suggest that NAAG is present in a subpopulation of primary afferent spinal neurons and that its biosynthesis is mediated by a dipeptide synthetase.

    Topics: Amino Acids; Animals; Anisomycin; Aspartic Acid; Chromatography, High Pressure Liquid; Cycloheximide; Dipeptides; Ganglia; Ganglia, Spinal; Glutamates; Glutamic Acid; Glutamine; Histocytochemistry; Immunologic Techniques; Male; Neurons; Rats; Rats, Inbred Strains

1987