anisomycin has been researched along with geranylgeraniol* in 2 studies
2 other study(ies) available for anisomycin and geranylgeraniol
Article | Year |
---|---|
On the complexities of ceramide changes in cells undergoing apoptosis: lack of evidence for a second messenger function in apoptotic induction.
The generation of cellular ceramides as a second messenger has been implicated as a regulatory and required step for the induction of apoptosis. In this study, we have applied a recently developed mass spectrometric technique to the determination of changes in physiological ceramide levels during apoptosis induced by tumor necrosis factor plus cycloheximide in U937 cells and the chemical agents anisomycin or geranylgeraniol in HL-60 cells. The mass spectrometric method has significant advantages over traditional methods for ceramide quantitation in that it determines the relative abundance of all ceramide species present in complex biological lipid mixtures individually and simultaneously. We quantitiated ceramides ranging from C14 to C26, finding that their basal levels and relative distribution varied significantly, both within and between different cell types. However, we were not able to detect any significant changes in either total ceramide content or species distribution until 1 h or more post-stimulation with any of these treatments, by which time the cells were in an advanced stage of apoptosis. Differences were also seen between all three treatments in the ceramide species distribution observed in these late stages of apoptosis. These data indicate that in vivo ceramide generation occurs as a consequence of apoptosis rather than as an essential second messenger involved in its induction. They also pose new questions about the potential roles that certain ceramide species may play in the late stages of apoptosis, and demonstrate a clear need to utilize the resolving power of mass spectrometry-based assays in any future investigations into the biological function of ceramides. Topics: Anisomycin; Apoptosis; Caspase 3; Caspase 8; Caspase 9; Caspases; Ceramides; Cycloheximide; Diterpenes; HL-60 Cells; Humans; Proteins; Second Messenger Systems; Tumor Necrosis Factor-alpha; U937 Cells | 1999 |
Selective activation of caspases during apoptotic induction in HL-60 cells. Effects Of a tetrapeptide inhibitor.
Apoptosis is a highly regulated biochemical process that results in the selective death of cells. Members of the caspase family of cysteine proteases play a pivotal role in the effector phase of apoptosis. We show that, in HL-60 cells, the addition of either anisomycin, a protein synthesis inhibitor, or geranylgeraniol, an intermediate in the cholesterol biosynthetic pathway, results in a rapid and en masse induction of apoptosis. The levels of actin, p42 and p44 MAPK, JNK1, JNK2, p38, and PCNA were not substantially altered during this process. Although these treatments appear to function by diverse pathways, they both result in the processing and activation of caspase-3 (CPP32beta/Yama/Apopain). In contrast, no activation of caspase-1 (interleukin-1beta converting enzyme (ICE)) was observed. Furthermore, we obtained ambiguous results regarding the activation of caspase-2 (Ich-1) depending on the antibody used. Pretreatment of the cells with benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethylketone (zVAD.fmk), a tetrapeptide inhibitor of caspases, prevented the induction of apoptosis for 24 h. Even after 72 h of treatment, some cells were still alive and progressing through the cell cycle, suggesting that blockage of caspase activity is able to protect cells. These results suggest that selective activation of some caspases is necessary to induce apoptosis in HL-60 cells. Topics: Anisomycin; Apoptosis; Diterpenes; HL-60 Cells; Humans; Protein Synthesis Inhibitors; Proteins | 1997 |