anisomycin has been researched along with alvocidib* in 2 studies
2 other study(ies) available for anisomycin and alvocidib
Article | Year |
---|---|
Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process.
Interactions between proteasome and cyclin-dependent kinase inhibitors have been examined in human leukemia cells in relation to induction of apoptosis. Simultaneous exposure (24 h) of U937 myelomonocytic leukemia cells to 100 nM flavopiridol and 300 nM MG-132 resulted in a marked increase in mitochondrial injury (cytochrome c, Smac/DIABLO release, loss of deltaPsi(m)), caspase activation, and synergistic induction of cell death, accompanied by a marked decrease in clonogenic potential. Similar effects were observed with other proteasome inhibitors (e.g., Bortezomib (VELCADE trade mark bortezomib or injection), lactacystin, LLnL) and cyclin-dependent kinase inhibitors (e.g., roscovitine), as well as other leukemia cell types (e.g., HL-60, Jurkat, Raji). In U937 cells, synergistic interactions between MG-132 and flavopiridol were associated with multiple perturbations in expression/activation of signaling- and survival-related proteins, including downregulation of XIAP and Mcl-1, activation of JNK and p34(cdc2), and diminished expression of p21(CIP1). The lethal effects of MG-132/flavopiridol were not reduced in leukemic cells ectopically expressing Bcl-2, but were partially attenuated in cells ectopically expressing dominant-negative caspase-8 or CrmA. Flavopiridol/proteasome inhibitor-mediated lethality was also significantly diminished by agents and siRNA blocking JNK activation. Lastly, coadministration of MG-132 with flavopiridol resulted in diminished DNA binding of NF-kappaB. Notably, pharmacologic interruption of the NF-kappaB pathway (e.g., by BAY 11-7082, PDTC, or SN-50) or molecular dysregulation of NF-kappaB (i.e., in cells ectopically expressing an IkappaBalpha super-repressor) mimicked the actions of proteasome inhibitors in promoting flavopiridol-induced mitochondrial injury, JNK activation, and apoptosis. Together, these findings indicate that proteasome inhibitors strikingly lower the apoptotic threshold of leukemic cells exposed to pharmacologic CDK inhibitors, and suggest that interruption of the NF-kappaB cytoprotective pathway and JNK activation both play key roles in this phenomenon. They also raise the possibility that combining proteasome and CDK inhibitors could represent a novel antileukemic strategy. Topics: Anisomycin; Antineoplastic Agents; Apoptosis; Blast Crisis; Boronic Acids; Bortezomib; Cyclin-Dependent Kinases; Cysteine Endopeptidases; Enzyme Inhibitors; Flavonoids; Gene Expression Regulation, Neoplastic; HL-60 Cells; Humans; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; Leukemia, Myeloid, Acute; Leupeptins; Mitogen-Activated Protein Kinases; Multienzyme Complexes; NF-kappa B; Piperidines; Proteasome Endopeptidase Complex; Pyrazines; Tumor Cells, Cultured; U937 Cells | 2003 |
Sensitization of tumor cells to ribotoxic stress-induced apoptotic cell death: a new therapeutic strategy.
We describe a procedure that sensitizes chemotherapy-and tumor necrosis factor-resistant human tumor cell populations in vitro and in nude mouse transplants to the immediate triggering of high rates of cell death by anisomycin, an agent causing activation of stress-activated protein kinases [SAPKs, as defined by P. Cohen (Trends Cell Biol., 7: 353-361, 1997)] including p38/RK and c-jun NH2-terminal kinase homologues, following its binding to ribosomal 28S RNA (M. S. Iordanov et al, Mol. Cell. Biol., 17: 3373-3381, 1997). Sensitization is effected by successive application of an inhibitor of histone deacetylation (trichostatin A, butyrate) and of flavopiridol, known as an inhibitor of cyclin dependent kinases and evaluated presently in clinical trials. Effective concentrations of anisomycin, flavopiridol, and trichostatin A are in the submicromolar range. Tumor cell death can be prevented by epidermal growth factor (EGF), if added before flavopiridol or after anisomycin but not if applied between the additions of these agents, suggesting that flavopiridol interrupts an EGF-activated survival pathway and that anisomycin, besides triggering cell death, guards this pathway against the interference by flavopiridol. In contrast to EGF, dibutyryl-cAMP exerts protection that is flavopiridol-insensitive. For triggering cell death, anisomycin cannot be replaced by DNA- or mitotic spindle-targeted drugs in this system. The present findings, that a combination of transcriptional and signal transduction-targeted modulators sensitizes tumor cells synergetically to stress-mediated triggering of cell death and that ribotoxic stress is more efficient in this respect than genotoxic or spindle-targeted stress, bear important implications for the therapeutic exploitation of cellular stress responses. The stepwise sensitization and triggering of cell death in the present system allow separate analysis and manipulation of processes contributing to cellular death susceptibility and of the mechanism responsible for triggering cell death, thus providing the operational basis for further development of this therapeutic approach. Topics: Animals; Anisomycin; Antineoplastic Agents; Apoptosis; Bucladesine; Epidermal Growth Factor; Flavonoids; Humans; Hydroxamic Acids; Mice; Mice, Nude; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Neoplasms, Experimental; p38 Mitogen-Activated Protein Kinases; Piperidines; Tumor Cells, Cultured | 1999 |