angiotensinogen and tolrestat

angiotensinogen has been researched along with tolrestat* in 2 studies

Other Studies

2 other study(ies) available for angiotensinogen and tolrestat

ArticleYear
Molecular mechanism(s) of insulin action on the expression of the angiotensinogen gene in kidney proximal tubular cells.
    Journal of the renin-angiotensin-aldosterone system : JRAAS, 2000, Volume: 1, Issue:2

    To investigate the molecular mechanism(s) of insulin action on the expression of the angiotensinogen (ANG) gene in kidney proximal tubular cells, we constructed a fusion gene, pOGH (hANG N-1064/+27), containing the 5'-flanking regulatory sequence of the human ANG gene fused with the human growth hormone (hGH) gene as a reporter and stably integrated the fusion gene into the opossum kidney (OK) cell genomes. The level of expression of pOGH (hANG N-1064/+27) was quantified by the amount of immunoreactive hGH secreted into the medium. The addition of a high level of D(+)-glucose (25 mM) or phorbol 12-myristate 13-acetate (PMA, 10(-7) M) stimulated the expression of the fusion gene in OK cells. The stimulatory effect of glucose (25 mM) was blocked by insulin and tolrestat (an inhibitor of aldose reductase). Tolrestat also inhibited the increase of cellular DAG and PKC activity stimulated by 25 mM glucose. While insulin did not affect the cellular DAG and PKC activity, it did block the stimulatory effect of high glucose (25 mM) and PMA on the expression of the fusion gene. Finally, PD98059 (an inhibitor of mitogen-activated protein kinase kinase (MEK)) enhanced the stimulatory effect of high levels of glucose and blocked the inhibitory effect of insulin on the expression of the fusion gene as well as on the phosphorylation of MEK and mitogen-activated protein kinase (MAPK). In contrast, Wortmannin (an inhibitor of phosphatidylinositol-3-kinase) did not block the inhibitory effect of insulin on the ANG gene expression. These studies demonstrate that the action of insulin, blocking the stimulatory effect of a high level of D(+)-glucose (25 mM) on the ANG gene expression is mediated, at least in part, via the 5'-flanking region of the ANG gene and MAPK signal transduction pathway.

    Topics: Androstadienes; Angiotensinogen; Animals; Artificial Gene Fusion; Cell Line; Diglycerides; Enzyme Inhibitors; Flavonoids; Gene Expression; Glucose; Human Growth Hormone; Humans; Insulin; Kidney Tubules, Proximal; Naphthalenes; Opossums; Peptide Fragments; Promoter Regions, Genetic; Protein Kinase C; Tetradecanoylphorbol Acetate; Wortmannin

2000
Molecular mechanisms of glucose action on angiotensinogen gene expression in rat proximal tubular cells.
    Kidney international, 1999, Volume: 55, Issue:2

    Clinical studies have shown that the angiotensin-converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor antagonists decrease proteinuria and slow the progression of nephropathy in diabetes, indicating that Ang II plays an important role in the development of nephropathy. We have previously reported that high levels of glucose stimulate the expression of rat angiotensinogen (ANG) gene in opossum kidney (OK) proximal tubular cells. We hypothesized that the stimulatory effect of D(+)-glucose on the expression of the ANG gene in kidney proximal tubular cells is mediated via de novo synthesis of diacylglycerol (DAG) and the protein kinase C (PKC) signal transduction pathway.. Immortalized rat proximal tubular cells (IRPTCs) were cultured in monolayer. The stimulatory effect of glucose on the activation of polyol pathway and PKC signal transduction pathway in IRPTCs was determined. The immunoreactive rat ANG (IR-rANG) in the culture medium and the cellular ANG mRNA were measured with a specific radioimmunoassay and a reverse transcription-polymerase chain reaction assay, respectively.. D(+)-glucose (25 mM) markedly increased the intracellular levels of sorbitol, fructose, DAG, and PKC activity as well as the expression of IR-rANG and ANG mRNA in IRPTCs. These stimulatory effects of D(+)-glucose (25 mM) were blocked by an inhibitor of aldose reductase, Tolrestat. PKC inhibitors also inhibited the stimulatory effect of D(+)-glucose (25 mM) on the expression of the IR-rANG in IRPTCs. The addition of phorbol 12-myristate 13-acetate further enhanced the stimulatory effect of D(+)-glucose (25 mM) on the expression of the IR-rANG in IRPTCs and blocked the inhibitory effect of Tolrestat.. These studies suggest that the stimulatory effect of a high level of D(+)-glucose (25 mM) on the expression of the ANG gene in IRPTCs is mediated, at least in part, via the de novo synthesis of DAG, an activator of PKC signal transduction pathway.

    Topics: Aldehyde Reductase; Angiotensinogen; Animals; Cell Line, Transformed; Enzyme Inhibitors; Gene Expression Regulation; Glucose; Kidney Tubules, Proximal; Naphthalenes; Protein Kinase C; Rats; RNA, Messenger; Stereoisomerism; Tetradecanoylphorbol Acetate

1999