angiotensinogen and cerivastatin

angiotensinogen has been researched along with cerivastatin* in 2 studies

Other Studies

2 other study(ies) available for angiotensinogen and cerivastatin

ArticleYear
Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor.
    Circulation, 2001, Jul-31, Volume: 104, Issue:5

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have effects that extend beyond cholesterol reduction. We used an angiotensin (Ang) II-dependent model to test the hypothesis that cerivastatin ameliorates cardiac injury.. We treated rats transgenic for human renin and angiotensinogen (dTGR) chronically from weeks 4 to 7 with cerivastatin (0.5 mg/kg by gavage). We used immunohistochemistry, electrophoretic mobility shift assays, and reverse transcription-polymerase chain reaction techniques. Compared with control dTGR, dTGR treated with cerivastatin had reduced mortality, blood pressure, cardiac hypertrophy, macrophage infiltration, and collagen I, laminin, and fibronectin deposition. Basic fibroblast growth factor mRNA and protein expression were markedly reduced, as was interleukin-6 expression. The transcription factors NF-kappaB and AP-1 were substantially less activated, although plasma cholesterol was not decreased.. These results suggest that statins ameliorate Ang II-induced hypertension, cardiac hypertrophy, fibrosis, and remodeling independently of cholesterol reduction. Although the clinical significance remains uncertain, the results suggest that statins interfere with Ang II-induced signaling and transcription factor activation, thereby ameliorating end-organ damage.

    Topics: Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Blood Pressure; Cardiovascular Diseases; CD4 Antigens; CD8 Antigens; Collagen; Fibroblast Growth Factor 2; Fibronectins; Gene Expression Regulation; Heart; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immunohistochemistry; Interleukin-6; Male; Myocardium; NF-kappa B; Oligonucleotides; Protein Binding; Pyridines; Rats; Rats, Sprague-Dawley; Renin; RNA, Messenger; Survival Analysis; Survival Rate; Transcription Factor AP-1

2001
Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects.
    Kidney international, 2000, Volume: 58, Issue:4

    Statins are effective in prevention of end-organ damage; however, the benefits cannot be fully explained on the basis of cholesterol reduction. We used an angiotensin II (Ang II)-dependent model to test the hypothesis that cerivastatin prevents leukocyte adhesion and infiltration, induction of inducible nitric oxide synthase (iNOS), and ameliorates end-organ damage.. We analyzed intracellular targets, such as mitogen-activated protein kinase and transcription factor (nuclear factor-kappaB and activator protein-1) activation. We used immunohistochemistry, immunocytochemistry, electrophoretic mobility shift assays, and enzyme-linked immunosorbent assay techniques. We treated rats transgenic for human renin and angiotensinogen (dTGR) chronically from week 4 to 7 with cerivastatin (0.5 mg/kg by gavage).. Untreated dTGR developed hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. dTGR mortality at the age of seven weeks was 45%. Immunohistochemistry showed increased iNOS expression in the endothelium and media of small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR, which was greater in cortex than medulla. Phosphorylated extracellular signal regulated kinase (p-ERK) was increased in dTGR; nuclear factor-kappaB and activator protein-1 were both activated. Cerivastatin decreased systolic blood pressure compared with untreated dTGR (147 +/- 14 vs. 201 +/- 6 mm Hg, P < 0.001). Albuminuria was reduced by 60% (P = 0.001), and creatinine was lowered (0.45 +/- 0.01 vs. 0.68 +/- 0.05 mg/dL, P = 0. 003); however, cholesterol was not reduced. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression was diminished, while neutrophil and monocyte infiltration in the kidney was markedly reduced. ERK phosphorylation and transcription factor activation were reduced. In addition, in vitro incubation of vascular smooth muscle cells with cerivastatin (0.5 micromol/L) almost completely prevented the Ang II-induced ERK phosphorylation.. Cerivastatin reduced inflammation, cell proliferation, and iNOS induction, which led to a reduction in cellular damage. Our findings suggest that 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibition ameliorates Ang II-induced end-organ damage. We suggest that these effects were independent of cholesterol.

    Topics: Albuminuria; Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Blood Pressure; Cell Division; Cholesterol; Creatinine; Disease Models, Animal; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Intercellular Adhesion Molecule-1; Kidney; Kidney Failure, Chronic; Leukocytes; Male; Mitogen-Activated Protein Kinases; NF-kappa B; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Organ Size; Phosphorylation; Plasminogen Activators; Pyridines; Rats; Rats, Sprague-Dawley; Renin; Thromboplastin; Transcription Factor AP-1; Urea; Vascular Cell Adhesion Molecule-1; Vasoconstrictor Agents

2000
chemdatabank.com