angiotensin ii has been researched along with palmitic acid in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (20.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 5 (50.00) | 24.3611 |
2020's | 1 (10.00) | 2.80 |
Authors | Studies |
---|---|
Friedman, E; Gurdal, H; Johnson, MD; Seasholtz, TM; Wang, HY | 1 |
Escher, E; Lefebvre, M; Maletínská, L; Neugebauer, W; Pérodin, J | 1 |
Halliwill, JR; Jensen, MD; Joyner, MJ; Nielsen, S | 1 |
Alfarano, C; Cerbai, E; Mannucci, E; Mugelli, A; Nediani, C; Raimondi, L; Sartiani, L | 1 |
Li, XY; Li, Y; Lu, CL; Wang, Y; Yuan, L | 1 |
Beneit, N; Benito, M; Díaz-Castroverde, S; Escribano, Ó; Gómez-Hernández, A; Otero, YF; Perdomo, L | 1 |
Chen, S; Levi, M; Li, C; Lin, Y; Luo, R; Wang, F; Wang, W; Yang, T; Zheng, P | 1 |
Chen, H; Fang, B; Luo, J; Ruan, Y; Sun, J; Wang, M; Xiu, L; Zhang, H | 1 |
Ding, W; Gu, Y; Guo, H; Li, H; Ling, L; Niu, J; Wang, B; Yang, M | 1 |
Capozzi, ME; Padovani-Claudio, DA; Penn, JS; Ramos, CJ | 1 |
1 review(s) available for angiotensin ii and palmitic acid
Article | Year |
---|---|
Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis.
Topics: Angiotensin II; Diabetes Mellitus; Diabetic Retinopathy; Glucose; Humans; Hyperglycemia; Hypertension; Neuroglia; Palmitic Acid | 2023 |
9 other study(ies) available for angiotensin ii and palmitic acid
Article | Year |
---|---|
Desensitization of norepinephrine receptor function is associated with G protein uncoupling in the rat aorta.
Topics: Adrenergic alpha-Antagonists; Angiotensin II; Animals; Aorta; Cell Membrane; Glycosylation; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); In Vitro Techniques; Inositol; Inositol Phosphates; Kinetics; Male; Muscle Contraction; Muscle, Smooth, Vascular; Norepinephrine; Palmitic Acid; Phenethylamines; Phenylephrine; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic; Receptors, Adrenergic, alpha-1; Serotonin; Tetralones | 1997 |
Angiotensin analogues palmitoylated in positions 1 and 4.
Topics: Adrenal Cortex; Angiotensin II; Animals; Aorta; Blood Pressure; Cattle; Chromatography, High Pressure Liquid; Lipolysis; Models, Chemical; Palmitic Acid; Rabbits; Structure-Activity Relationship | 1997 |
Vascular response to angiotensin II in upper body obesity.
Topics: Acetylcholine; Adult; Angiotensin II; Blood Glucose; Body Composition; Dose-Response Relationship, Drug; Forearm; Humans; Hypertension; Insulin Resistance; Lipolysis; Male; Nitric Oxide Synthase; Nitroprusside; Obesity; omega-N-Methylarginine; Palmitic Acid; Regional Blood Flow; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2004 |
Functional coupling of angiotensin II type 1 receptor with insulin resistance of energy substrate uptakes in immortalized cardiomyocytes (HL-1 cells).
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Cell Line; Cell Survival; Glucose; Hypertrophy; Insulin; Insulin Resistance; Mice; Myocytes, Cardiac; Palmitic Acid; Receptor, Angiotensin, Type 1 | 2008 |
Ang (1-7) protects islet endothelial cells from palmitate-induced apoptosis by AKT, eNOS, p38 MAPK, and JNK pathways.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Apoptosis; Cell Line, Transformed; Endothelium, Vascular; Enzyme Activation; Fatty Acids, Nonesterified; Islets of Langerhans; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mice; Microvessels; Nitric Oxide Synthase Type III; p38 Mitogen-Activated Protein Kinases; Palmitic Acid; Peptide Fragments; Protective Agents; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled; Signal Transduction | 2014 |
Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process.
Topics: Angiotensin II; Animals; Apoptosis; Atherosclerosis; Blotting, Western; Cell Line; Cell Proliferation; Chemokine CCL2; Inflammation; Insulin Resistance; Intercellular Adhesion Molecule-1; MAP Kinase Signaling System; Mice; Muscle, Smooth, Vascular; Myocytes, Cardiac; Myocytes, Smooth Muscle; NF-kappa B; Nitric Oxide Synthase Type III; Oleic Acid; Palmitates; Palmitic Acid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha; Vasoconstrictor Agents | 2015 |
Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney.
Topics: Amides; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Blood Glucose; Cell Line; Cell Survival; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Fumarates; Gene Expression Regulation; Heat-Shock Proteins; Humans; Kidney Diseases; Kidney Tubules, Proximal; Male; Mice, Inbred C57BL; Palmitic Acid; Renin-Angiotensin System; RNA, Messenger; Signal Transduction; Transcription Factor CHOP; Tunicamycin; Unfolded Protein Response; Valsartan | 2016 |
Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway.
Topics: 3T3-L1 Cells; Adipocytes; alpha-2-HS-Glycoprotein; Angiotensin II; Angiotensinogen; Animals; Mice; NF-kappa B; Palmitic Acid; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Signal Transduction; Toll-Like Receptor 4 | 2016 |
Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet.
Topics: Activating Transcription Factor 4; Angiotensin II; Animals; Blood Pressure; Body Weight; Diet, High-Fat; Eating; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Gene Expression; Glucagon-Like Peptide 1; Heat-Shock Proteins; Kidney Tubules, Proximal; Male; Mice; Nephritis; Organ Size; Palmitic Acid; Protective Agents; Receptor, Angiotensin, Type 1; Transcription Factor CHOP | 2017 |