angiotensin ii has been researched along with aminopropionitrile in 27 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 14 (51.85) | 24.3611 |
2020's | 13 (48.15) | 2.80 |
Authors | Studies |
---|---|
Hashimoto, T; Kanematsu, M; Kanematsu, Y; Kurihara, C; Liang, EI; Makino, H; Nuki, Y; Tsou, TL | 1 |
Aoki, H; Imaizumi, T; Kyogoku, S; Minami, T; Nagata, T; Oba, T; Ohmura, H; Ohshima, H; Sugi, Y; Yasukawa, H | 1 |
Csiszar, K; Fong, SF; Joseph, G; O'Donnell, RE; Rafferty, K; Remus, EW; Taylor, WR; Weiss, D | 1 |
Hirata, Y; Kitagawa, T; Kurobe, H; Matsuoka, Y; Maxfield, MW; Sata, M; Sugasawa, N | 1 |
Choi, E; Daugherty, A; Eguchi, S; Elliott, KJ; Forrester, SJ; Fukuda, Y; Kawai, T; Kobayashi, T; Obama, T; Rizzo, V; Takayanagi, T; Taro, Y; Tsuji, T | 1 |
Anzai, A; Endo, J; Fukuda, K; Ito, K; Katsumata, Y; Kohno, T; Matsuhashi, T; Okada, Y; Sano, M; Shimizu-Hirota, R; Shimoda, M; Shinmura, K; Shirakawa, K; Ueha, S; Yamada, Y; Yamamoto, T; Yan, X | 1 |
Eberson, LS; Larson, DF; Majeed, BA; Sanchez, PA; Secomb, TW; Tawinwung, S | 1 |
Du, J; Jia, L; Lan, F; Liu, Y; Piao, C; Ren, W; Wang, X | 1 |
Chiba, Y; Imanishi, M; Matsunaga, S; Nakagawa, T; Tamaki, T; Tomita, N; Tomita, S; Ueno, M; Yamamoto, K | 1 |
Li, SH; Liu, SX; Wang, GK; Wang, Y; Xu, ZY; Yan, Y; Yang, F; Zhang, GX; Zhao, ZM | 1 |
Boyer, MJ; Cooper, HA; Eguchi, S; Forrester, SJ; Hashimoto, T; Kawai, T; Kobayashi, T; Kwok, HF; Obama, T; Preston, KJ; Rizzo, V; Scalia, R; Takayanagi, T; Tsuji, T | 1 |
Ailawadi, G; Cullen, JM; Fashandi, AZ; Hawkins, RB; Lu, G; Montgomery, WG; Salmon, MD; Spinosa, MD; Su, G; Upchurch, GR | 1 |
Chuma, M; Fujino, H; Fukushima, K; Horinouchi, Y; Ikeda, Y; Imanishi, M; Ishizawa, K; Izawa-Ishizawa, Y; Kohara, Y; Sairyo, E; Sakurada, T; Takechi, K; Tamaki, T; Tsuchiya, K; Yoshizumi, M; Zamami, Y | 1 |
Jiang, C; Kong, W; Li, X; Lian, G; Liu, H; Pang, Y; Sun, L; Wang, X; Zhang, L; Zhang, T; Zhang, X; Zhang, Y | 1 |
Ailawadi, G; Cullen, JM; Fashandi, AZ; Hawkins, RB; Lu, G; Mast, A; Montgomery, W; Salmon, M; Sharma, AK; Spinosa, M; Su, G; Upchurch, GR | 1 |
Ren, Q; Ren, W; Ruan, Y; Wang, J; Wang, Z; Wu, Z; Yu, A | 1 |
Chang, L; Chang, Z; Chen, YE; Fan, Y; Garcia-Barrio, MT; Guo, Y; Liang, W; Lu, H; Rom, O; Sun, J; Wang, H; Xiong, W; Zhang, J; Zhao, G; Zhao, Y; Zhu, T | 1 |
Choi, ET; Cicalese, S; Cooper, HA; Eguchi, S; Kasahara, S; Kawai, T; Okuno, K; Otaka, N; Preston, KJ; Rizzo, V; Scalia, R; Uchida, HA | 1 |
Aoki, H; Fukumoto, Y; Furusho, A; Hashimoto, Y; Hayashi-Hori, M; Hirakata, S; Ito, S; Majima, R; Matsukuma, M; Nishida, N; Ohno-Urabe, S | 1 |
Chuma, M; Goda, M; Hosooka, M; Ishizawa, K; Izawa-Ishizawa, Y; Kagimoto, Y; Kondo, M; Matsuoka, R; Saito, N; Takechi, K; Tsuneyama, K; Yagi, K; Zamami, Y | 1 |
Arnaoutakis, GJ; Chun, C; Jiang, Z; Pruitt, EY; Qi, X; Saldarriaga, L; Upchurch, GR; Wang, F | 1 |
Chen, L; Chen, X; Hou, Y; Hu, Y; Lin, Y; Lv, X | 1 |
Chan, YH; Chen, SW; Chou, AH; Chou, SH; Chu, PH; Ho, CT; Hsiao, FC; Hsu, ME; Kao, WWY; Lin, PJ; Tung, YC; Wu, VC | 1 |
Daugherty, A; Franklin, MK; Howatt, DA; Lu, HS; Moorleghen, JJ; Mullick, AE; Ohno-Urabe, S; Sawada, H; Ye, D | 1 |
Chen, D; Gao, S; Ge, S; Luo, J; Niu, K; Ren, M; Shao, Y; Wang, X; Wu, Q; Xiao, Q; Yang, M; Yang, Z; Zhang, C; Zhou, X | 1 |
Darmon, A; Dupont, S; El Bitar, S; Jondeau, G; Michel, JB; Pellenc, Q | 1 |
Cicalese, SM; Eguchi, S; Hashimoto, T; Okuno, K; Rizzo, V; Sparks, MA; Torimoto, K | 1 |
27 other study(ies) available for angiotensin ii and aminopropionitrile
Article | Year |
---|---|
Pharmacologically induced thoracic and abdominal aortic aneurysms in mice.
Topics: Aminopropionitrile; Amlodipine; Angiotensin II; Animals; Antihypertensive Agents; Aortic Aneurysm, Abdominal; Aortic Aneurysm, Thoracic; Aortic Dissection; Blood Pressure; Desoxycorticosterone; Humans; Hypertension; Male; Mice; Mice, Inbred C57BL; Mineralocorticoids; Protein-Lysine 6-Oxidase | 2010 |
Cardiomyocyte-specific transgenic expression of lysyl oxidase-like protein-1 induces cardiac hypertrophy in mice.
Topics: Amino Acid Oxidoreductases; Aminopropionitrile; Angiotensin II; Animals; Animals, Newborn; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Echocardiography; Endothelin-1; In Vitro Techniques; Leucine; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocytes, Cardiac; Rats; Rats, Wistar | 2012 |
The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms.
Topics: Amino Acid Oxidoreductases; Aminopropionitrile; Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Apolipoproteins E; Atherosclerosis; Diet, High-Fat; Disease Models, Animal; Extracellular Matrix; Extracellular Matrix Proteins; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Protein-Lysine 6-Oxidase; RNA, Messenger; Vasoconstrictor Agents | 2012 |
Azelnidipine suppresses the progression of aortic aneurysm in wild mice model through anti-inflammatory effects.
Topics: Aminopropionitrile; Angiotensin II; Animals; Anti-Inflammatory Agents; Aorta, Abdominal; Aorta, Thoracic; Aortic Aneurysm, Abdominal; Aortic Aneurysm, Thoracic; Azetidinecarboxylic Acid; Blood Pressure; Calcium Channel Blockers; Dihydropyridines; Disease Models, Animal; Disease Progression; Inflammation Mediators; Macrophages; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Sirtuin 1; Time Factors; Tumor Necrosis Factor-alpha | 2013 |
Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Aortic Rupture; Cells, Cultured; Cytoprotection; Disease Models, Animal; Endoplasmic Reticulum Stress; ErbB Receptors; Erlotinib Hydrochloride; Extracellular Matrix; Humans; Interleukin-6; Male; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxidative Stress; Protein Kinase Inhibitors; Quinazolines; Rats, Sprague-Dawley; Time Factors | 2015 |
Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture.
Topics: Acute Disease; Adventitia; Aged; Aminopropionitrile; Angiotensin II; Animals; Antibodies, Monoclonal; Aorta, Thoracic; Aortic Aneurysm, Thoracic; Aortic Dissection; Aortic Rupture; Aortography; Chemokine CXCL1; Chemokine CXCL12; Chemotaxis, Leukocyte; Dilatation, Pathologic; Disease Models, Animal; Female; Granulocyte Colony-Stimulating Factor; Humans; Inflammation Mediators; Interleukin-6; Interleukin-8; Male; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Neutrophil Activation; Neutrophil Infiltration; Neutrophils; Receptors, Interleukin-8B; Signal Transduction; Time Factors | 2015 |
Effect of lysyl oxidase inhibition on angiotensin II-induced arterial hypertension, remodeling, and stiffness.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta; Blood Pressure; Hypertension; Male; Mice; Mice, Inbred C57BL; Protein-Lysine 6-Oxidase; Pulse Wave Analysis; Vascular Remodeling; Vascular Stiffness; Vasoconstrictor Agents | 2015 |
β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice.
Topics: Actins; Aminopropionitrile; Angiotensin II; Animals; Aortic Aneurysm, Thoracic; Blood Pressure; Body Weight; Collagen Type I; Collagen Type I, alpha 1 Chain; Disease Models, Animal; Humans; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Myosin Heavy Chains; Phenotype | 2016 |
Hypoxia-Inducible Factor-1α in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta, Abdominal; Aorta, Thoracic; Aortic Aneurysm, Abdominal; Aortic Aneurysm, Thoracic; Cells, Cultured; Dilatation, Pathologic; Disease Models, Animal; Elastic Tissue; Genetic Predisposition to Disease; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phenotype; Protein-Lysine 6-Oxidase; Tropoelastin; Vascular Remodeling | 2016 |
Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta, Thoracic; Aortic Dissection; Apoptosis; Autophagy; Beclin-1; Cell Differentiation; Cell Proliferation; Elasticity; Humans; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Microscopy, Electron, Transmission; Microtubule-Associated Proteins; Myocytes, Smooth Muscle; Phenotype; Up-Regulation | 2016 |
Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile-Induced Abdominal Aortic Aneurysm.
Topics: ADAM17 Protein; Aminopropionitrile; Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; ErbB Receptors; Hypertension; Mice; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Protein-Lysine 6-Oxidase; Receptor Activity-Modifying Proteins; Signal Transduction | 2017 |
A novel reproducible model of aortic aneurysm rupture.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta; Aortic Rupture; Cytokines; Disease Models, Animal; Male; Mice; Mice, Knockout, ApoE | 2018 |
Nitrosonifedipine, a Photodegradation Product of Nifedipine, Suppresses Pharmacologically Induced Aortic Aneurysm Formation.
Topics: Aminopropionitrile; Angiotensin II; Animals; Antigens, Differentiation; Antioxidants; Aortic Aneurysm; Chemokine CCL2; Cyclophilins; Disease Models, Animal; Elastin; Endothelial Cells; Human Umbilical Vein Endothelial Cells; Humans; Male; Matrix Metalloproteinase 2; Mice; Nifedipine; Nitroso Compounds; Oxidative Stress; Photolysis; Reactive Oxygen Species; Vascular Cell Adhesion Molecule-1 | 2018 |
Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway
Topics: Acriflavine; ADAM17 Protein; Aminopropionitrile; Angiotensin II; Animals; Aortic Dissection; Disease Models, Animal; Disease Progression; HEK293 Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Macrophages; Male; Mice, Inbred C57BL; Up-Regulation | 2019 |
Female Mice Exhibit Abdominal Aortic Aneurysm Protection in an Established Rupture Model.
Topics: Administration, Oral; Aminopropionitrile; Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Aortic Rupture; Disease Models, Animal; Female; Humans; Male; Mice; Mice, Knockout, ApoE; Protective Factors; Sex Factors | 2020 |
IL-5 overexpression attenuates aortic dissection by reducing inflammation and smooth muscle cell apoptosis.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta; Aortic Dissection; Apoptosis; Case-Control Studies; Disease Models, Animal; Female; Humans; Inflammation; Interleukin-5; Macrophages; Male; Mice; Mice, Inbred C57BL; Middle Aged; Myocytes, Smooth Muscle; Prognosis | 2020 |
Cyclodextrin Prevents Abdominal Aortic Aneurysm via Activation of Vascular Smooth Muscle Cell Transcription Factor EB.
Topics: 2-Hydroxypropyl-beta-cyclodextrin; Aminopropionitrile; Aneurysm, Ruptured; Angiotensin II; Animals; Aortic Aneurysm, Abdominal; Apoptosis; Autophagy; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cholesterol; Disease Models, Animal; Down-Regulation; Drug Evaluation, Preclinical; Gain of Function Mutation; Gene Expression Regulation; Genetic Vectors; Humans; Loss of Function Mutation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Promoter Regions, Genetic; Proto-Oncogene Proteins c-bcl-2; Transcriptome | 2020 |
Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm.
Topics: Aminopropionitrile; Angiotensin II; Animals; Anti-Inflammatory Agents; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Case-Control Studies; Cell Adhesion; Cells, Cultured; Disease Models, Animal; Dynamins; Humans; Leukocytes; Male; Mice, Inbred C57BL; Mice, Knockout, ApoE; Mitochondria, Muscle; Mitochondrial Dynamics; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxygen Consumption; Phosphorylation; Quinazolinones | 2021 |
Therapeutic Effect of Rapamycin on Aortic Dissection in Mice.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aortic Dissection; Cell Cycle Checkpoints; Cell Line; Disease Models, Animal; Gefitinib; Gene Expression Regulation; Gene Ontology; Gene Regulatory Networks; Male; Mice; Muscle, Smooth, Vascular; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; STAT3 Transcription Factor; TOR Serine-Threonine Kinases | 2020 |
Preventive Effects of Quercetin against the Onset of Atherosclerosis-Related Acute Aortic Syndromes in Mice.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta, Thoracic; Aortic Aneurysm; Aortic Dissection; Atherosclerosis; Blood Pressure; Disease Models, Animal; Humans; Hypertension; Mice; Protein-Lysine 6-Oxidase; Quercetin | 2020 |
A validated mouse model capable of recapitulating the protective effects of female sex hormones on ascending aortic aneurysms and dissections (AADs).
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta; Aortic Aneurysm; Aortic Dissection; Disease Models, Animal; Estradiol; Estrogens; Female; Lymphocytes; Male; Mice; Mice, Inbred C57BL; Myeloid Cells | 2020 |
Establishment and effect evaluation of an aortic dissection model induced by different doses of β-aminopropionitrile in rats.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aorta, Thoracic; Aortic Aneurysm, Thoracic; Aortic Dissection; Dilatation, Pathologic; Disease Models, Animal; Disease Progression; Magnetic Resonance Imaging; Male; Rats, Sprague-Dawley; Time Factors; Vascular Remodeling | 2021 |
Expression and role of lumican in acute aortic dissection: A human and mouse study.
Topics: Acute Disease; Aminopropionitrile; Angiotensin II; Animals; Aorta; Aortic Dissection; Aortic Rupture; Biomarkers; Chronic Disease; Disease Models, Animal; Humans; Incidence; Kaplan-Meier Estimate; Lumican; Mice; Mice, Inbred C57BL; Mice, Knockout; Smad2 Protein; Transforming Growth Factor beta; Up-Regulation | 2021 |
Inhibition of the Renin-Angiotensin System Fails to Suppress β-Aminopropionitrile-Induced Thoracic Aortopathy in Mice-Brief Report.
Topics: Aminopropionitrile; Angiotensin II; Angiotensinogen; Animals; Aortic Aneurysm, Thoracic; Aortic Rupture; Dilatation, Pathologic; Disease Models, Animal; Irbesartan; Losartan; Lysine; Male; Mice; Mice, Inbred C57BL; Protein-Lysine 6-Oxidase; Receptor, Angiotensin, Type 1; Renin; Renin-Angiotensin System | 2022 |
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aortic Dissection; Disease Models, Animal; Elastin; Humans; Inflammation; Matrix Metalloproteinase 8; Mice; Mice, Knockout; Reactive Oxygen Species; Vascular Cell Adhesion Molecule-1 | 2022 |
Smooth Muscle Cell Relaxation Worsens Aortic Dilatation and Clinical Presentation in a BAPN/Angiotensin II-Induced Aortic Dissection Model in Rats.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aortic Dissection; Dilatation; Disease Models, Animal; Humans; Mice; Myocytes, Smooth Muscle; Rats; Rats, Sprague-Dawley | 2022 |
Smooth muscle angiotensin II type 1A receptor is required for abdominal aortic aneurysm formation induced by angiotensin II plus β-aminopropionitrile.
Topics: Aminopropionitrile; Angiotensin II; Animals; Aortic Aneurysm, Abdominal; Disease Models, Animal; Humans; Mice; Mice, Inbred C57BL; Muscle, Smooth; Myocytes, Smooth Muscle; Receptor, Angiotensin, Type 1 | 2023 |