angiotensin-i has been researched along with ubenimex* in 3 studies
3 other study(ies) available for angiotensin-i and ubenimex
Article | Year |
---|---|
Effect of bestatin on angiotensin I-, II- and III-induced collagen gel contraction in cardiac fibroblasts.
The purpose of this investigation was to determine whether the aminopeptidase inhibitor with broad specificity, bestatin, affects angiotensin I (Ang I)-, angiotensin II (Ang II)- or angiotensin III (Ang III)-stimulated collagen gel contraction in cardiac fibroblasts.. Cardiac fibroblasts (from normal male adult rats) were cultured to confluency in Dulbeccos modified Eagles medium (DMEM) with 10% foetal bovine serum (FBS). These fibroblasts (100,000 cells) were then further incubated in a floating collagen gel lattice with the test products Ang I (1 micromol/L), Ang II (100 nmol/L), Ang III (100 nmol/L) and bestatin (100 micromol/L) for three days in DMEM without FBS. The area of the collagen gels embedded with cardiac fibroblasts was determined by a densitometric analysis. Aminopeptidase activity was estimated by spectrophotometric determination of the liberation of p-nitroaniline from alanine- or arginine-p-nitroanilide.. Ang I, II and III stimulated (p<0.05) collagen gel contraction by 30.4+/-4.8 (SEM)%, 27.1+/-3.1% and 15.4+/-3.6% respectively. Ang I- and II-induced stimulation of collagen gel contraction was of the same order but more pronounced (p<0.05) than Ang III- stimulated collagen gel contraction. The Ang I-, II- and III-stimulated collagen contraction was reduced by bestatin. Bestatin, however, did not affect basal collagen gel contraction in cardiac fibroblasts. Bestatin dose-dependently inhibited the hydrolysis of arginine- and alanine-p-nitroanilide in cardiac fibroblasts. When a neutralising antibody to transforming growth factor TGF-b1 was added to the collagen gel simultaneously with the angiotensins, the stimulated collagen contraction was not affected. Beta-aminoproprionitrile, an inhibitor of lysyl oxidase, completely abolished basal as well as Ang I-, II- and III-stimulated collagen contraction in cardiac fibroblasts.. Our data suggest that aminopeptidases are involved in the Ang I-, II- and III-induced stimulation of collagen contraction in cardiac fibroblasts. Topics: Aminopeptidases; Angiotensin I; Angiotensin II; Angiotensin III; Angiotensins; Anilides; Animals; Cells, Cultured; Collagen; DNA; Fibroblasts; Gels; Hydrolysis; Leucine; Male; Myocardium; Nitro Compounds; Rats; Rats, Wistar; Thymidine | 2004 |
Degradation of angiotensin I in the endothelium and smooth muscle of the rat aorta.
In homogenates of the endothelium and smooth muscle cum adventitia of the rat aorta, exogenous angiotensin (ANG) I was found to be degraded to des-aspartate-ANG I (des-Asp-ANG I) instead of ANG II. ANG II and ANG III were not detectable in either of the homogenates after 5, 10 and 30 min of incubation with the decapeptide. However, both the homogenates were able to catalyse hippuryl-L-histidyl-L-leucine (HHL) to hippuric acid and the catalysis was completely inhibited by 3 microM captopril. The data show that the angiotensin converting enzyme (ACE) present in the homogenates of rat aorta, prepared by normal laboratory procedures, is not able to hydrolyse ANG I to ANG II. This finding has important consequences in the study of vascular ACE as the assay of the enzyme is often carried out using crude homogenate and HHL or other artificial substrates. In addition, the aminopeptidase that degraded ANG I to des-Asp-ANG I was not inhibited by either amastatin or bestatin, indicating that it was not aminopeptidase A or B. Together with the recent findings of other investigators which show that the de novo production of ANG II in vascular tissues is stimulated and inhibited by beta- and alpha-agonists, respectively, our present data may suggest that production of vascular ANG II occurs only in intact tissues and is probably under adrenergic regulation. Topics: Amino Acid Sequence; Aminopeptidases; Angiotensin I; Angiotensin II; Angiotensin III; Animals; Anti-Bacterial Agents; Aorta; Endothelium, Vascular; Leucine; Male; Molecular Sequence Data; Muscle, Smooth, Vascular; Oligopeptides; Peptides; Rats; Rats, Sprague-Dawley | 1993 |
An improved method for measuring angiotensin I converting enzyme activity using a highly sensitive angiotensin II radioimmunoassay.
A highly sensitive assay for angiotensin I converting enzyme has been developed by using angiotensin I as a substrate. Angiotensin II generated in the reaction mixture was measured by a newly developed specific radioimmunoassay. To protect against angiotensin II destruction, bestatin, an inhibitor of renin, was also used to inhibit plasma renin activity. The reaction was stopped by adding EDTA and MK-521, inhibitors of angiotensin I converting enzyme. The specificity of the antiserum used for the angiotensin II radioimmunoassay was very high. The cross reactivity with angiotensin I was less than 0.5% and none of the proteolytic enzyme inhibitors crossreacted in the assay. The inhibitory effect of pepstatin on plasma renin activity was very high (more than 80%) under the standard assay conditions employed. Serum angiotensinase activity was completely inhibited by the addition of bestatin. An excellent correlation was obtained between this new method and the spectrophotometric method using a synthetic substrate, Hip-His-Leu. The generation of as little as 12 pM of Angiotensin II can be detected. Such low concentration have not been measurable with the usual spectrophotometric method. This new method will facilitate clinical and experimental studies on this unique enzyme, since very low levels of activity can be determined by this highly sensitive radioimmunoassay for angiotensin II. Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Angiotensins; Animals; Cross Reactions; Edetic Acid; Enalapril; Leucine; Lisinopril; Oligopeptides; Pepstatins; Peptidyl-Dipeptidase A; Protease Inhibitors; Rabbits; Radioimmunoassay; Renin; Spectrophotometry; Substrate Specificity | 1985 |