angiotensin-i and nephrin

angiotensin-i has been researched along with nephrin* in 6 studies

Other Studies

6 other study(ies) available for angiotensin-i and nephrin

ArticleYear
Decreased Ang-(1-7) and Downregulated Intrarenal RAS May Contribute to the Direct Podocyte Injury With Proteinuria in Preeclampsia.
    Reproductive sciences (Thousand Oaks, Calif.), 2019, Volume: 26, Issue:8

    Topics: Actins; Adult; Angiotensin I; Animals; Blood Pressure; Cell Line; Down-Regulation; Female; Humans; Hypertension, Pregnancy-Induced; Membrane Proteins; Mice; Peptide Fragments; Podocytes; Pre-Eclampsia; Pregnancy; Proteinuria; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Zonula Occludens-1 Protein

2019
Deletion of angiotensin-converting enzyme 2 exacerbates renal inflammation and injury in apolipoprotein E-deficient mice through modulation of the nephrin and TNF-alpha-TNFRSF1A signaling.
    Journal of translational medicine, 2015, Aug-06, Volume: 13

    The renin-angiotensin system (RAS) has been implicated in atherosclerotic lesions and progression to chronic kidney diseases. We examined regulatory roles of angiotensin-converting enzyme 2 (ACE2) in the apolipoprotein E (ApoE) knockout (KO) kidneys.. The 3-month-old wild-type, ApoEKO, ACE2KO and ApoE/ACE2 double-KO (DKO) mice in a C57BL/6 background were used. The ApoEKO mice were randomized to daily deliver either Ang II (1.5 mg/kg) and/or human recombinant ACE2 (rhACE2; 2 mg/kg) for 2 weeks. We examined changes in pro-inflammatory cytokines, renal ultrastructure, and pathological signaling in mouse kidneys.. Downregulation of ACE2 and nephrin levels was observed in ApoEKO kidneys. Genetic ACE2 deletion resulted in modest elevations in systolic blood pressure levels and Ang II type 1 receptor expression and reduced nephrin expression in kidneys of the ApoE/ACE2 DKO mice with a decrease in renal Ang-(1-7) levels. These changes were linked with marked increases in renal superoxide generation, NADPH oxidase (NOX) 4 and proinflammatory factors levels, including interleukin (IL)-1beta, IL-6, IL-17A, RANTES, ICAM-1, Tumor necrosis factor-alpha (TNF-alpha) and TNFRSF1A. Renal dysfunction and ultrastructure injury were aggravated in the ApoE/ACE2 DKO mice and Ang II-infused ApoEKO mice with increased plasma levels of creatinine, blood urea nitrogen and enhanced levels of Ang II in plasma and kidneys. The Ang II-mediated reductions of renal ACE2 and nephrin levels in ApoEKO mice were remarkably rescued by rhACE2 supplementation, along with augmentation of renal Ang-(1-7) levels. More importantly, rhACE2 treatment significantly reversed Ang II-induced renal inflammation, superoxide generation, kidney dysfunction and adverse renal injury in ApoEKO mice with suppression of the NOX4 and TNF-alpha-TNFRSF1A signaling. However, rhACE2 had no effect on renal NOX2 and TNFRSF1B expression and circulating lipid levels.. ACE2 deficiency exacerbates kidney inflammation, oxidative stress and adverse renal injury in the ApoE-mutant mice through modulation of the nephrin, NOX4 and TNF-alpha-TNFRSF1A signaling. While rhACE2 supplementation alleviates inflammation, renal dysfunction and glomerulus injury in the ApoE-mutant mice associated with upregulations of Ang-(1-7) levels and nephrin expression and suppression of the TNF-alpha-TNFRSF1A signaling. Strategies aimed at enhancing the ACE2/Ang-(1-7) actions may have important therapeutic potential for atherosclerotic renal injury and kidney diseases.

    Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Apolipoproteins E; Gene Deletion; Humans; Inflammation; Kidney; Male; Membrane Proteins; Mice, Inbred C57BL; Mice, Knockout; Models, Biological; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Real-Time Polymerase Chain Reaction; Receptor, Angiotensin, Type 1; Receptors, Tumor Necrosis Factor, Type I; Recombinant Proteins; Signal Transduction; Superoxides; Tumor Necrosis Factor-alpha

2015
Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT1 receptor blockade than males.
    American journal of physiology. Renal physiology, 2014, May-15, Volume: 306, Issue:10

    ANG (1-7) contributes to the blood pressure (BP)-lowering effect of angiotensin receptor blockers (ARBs) in male experimental animals. Females have greater ANG (1-7) concentrations than males; however, the contribution of ANG (1-7) to ARB-mediated decreases in BP in females is unknown. The current study tested the hypothesis that female spontaneously hypertensive rats (SHR) have a larger ANG (1-7) contribution to the BP-lowering effects of the ARB candesartan than male SHR. Twelve-week-old male and female SHR were randomized to receive candesartan (0.5 mg·kg(-1)·day(-1); 7 days), candesartan plus ANG II (200 ng·kg(-1)·min(-1); 7 days), the ANG (1-7) antagonist A-779 (48 μg·kg(-1)·h(-1)) plus candesartan and ANG II. Candesartan decreased basal BP in males and females (baseline vs. candesartan: 142 ± 2 vs. 122 ± 3 and 129 ± 1 vs. 115 ± 1 mmHg, respectively; P < 0.05); however, the decrease was greater in males. ANG II increased BP in males in the presence of candesartan (149 ± 2 mmHg; P < 0.05); candesartan blocked ANG II-induced increases in BP in females (116 ± 1 mmHg). Pretreatment with A-779 abolished candesartan-mediated decreases in BP in females, but not males. A-779 also exacerbated ANG II-induced proteinuria (26 ± 6 vs. 77 ± 11 μg·kg(-1)·day(-1), respectively; P < 0.05) and nephrinuria (20 ± 5 vs. 202 ± 58 μg·kg(-1)·day(-1), respectively; P < 0.05) in candesartan-treated female SHR, with no effect in males. In conclusion, females are more sensitive to the BP-lowering effect of ARBs during ANG II infusion, whereas males are more sensitive under basal conditions. In addition, ANG (1-7) has a greater contribution to ARB-mediated decreases in BP, protein, and nephrin excretion in females relative to males.

    Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Cell Adhesion Molecules; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypertension; Male; Membrane Proteins; Peptide Fragments; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Sex Factors; Tetrazoles

2014
Angiotensin-(1-7) attenuates damage to podocytes induced by preeclamptic serum through MAPK pathways.
    International journal of molecular medicine, 2014, Volume: 34, Issue:4

    The underlying mechanisms of proteinuria, a main characteristic of preeclampsia (PE), have not yet been fully elucidated. Evidence indicates that the renin-angiotensin system (RAS) is involved in the pathogenesis of this disease, including decreased angiotensin-(1-7) [Ang-(1-7)] levels in the circulation and urine. In the present study, we examined the damage to podocytes induced by preeclamptic serum and the effects of Ang-(1-7) on podocytes treated with preeclamptic serum, as well as the underlying mechanisms. The podocytes were incubated with serum obtained from women with PE or with serum from women with normal pregnancies for different periods of time. Cell viability was determined by CCK-8 assay. The cells were treated with various concentrations of Ang-(1-7) and A779 [an (Ang-(1-7) antagonist]. The effects of Ang-(1-7) on the expression of podocyte-specific proteins [nephrin, Wilms tumor‑1 (WT-1) and podocin] and the phosphorylation of mitogen-activated protein kinases (MAPKs) were investigated by western blot analysis. Changes in F-actin rearrangement were determined by immunofluorescence. Podocyte apoptosis was determined by flow cytometry. The results revealed that in the cultured podocytes incubated with preeclamptic serum, there was a decrease in the expression of podocyte-specific proteins (nephrin and WT-1 but not podocin), a rearrangement of F-actin and apoptosis compared with the control group. However, treatment with Ang-(1-7) attenuated podocyte injury in the preeclamptic group, which may be mediated through the downregulation of MAPK (p38, ERK1/2 and JNK) phosphorylation. Thus, our data suggest that Ang-(1-7) plays a protective role in PE through the downregulation of MAPK phosphorylation.

    Topics: Actins; Adult; Angiotensin I; Angiotensin II; Apoptosis; Cell Survival; Female; Humans; Intracellular Signaling Peptides and Proteins; MAP Kinase Signaling System; Membrane Proteins; Mitogen-Activated Protein Kinases; Peptide Fragments; Phosphorylation; Podocytes; Pre-Eclampsia; Pregnancy; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled

2014
Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats.
    American journal of physiology. Renal physiology, 2011, Volume: 300, Issue:1

    Angiotensin (ANG)-(1-7) constitutes an important functional end-product of the renin-angiotensin-aldosterone system that acts to balance the physiological actions of ANG II. In the kidney, ANG-(1-7) exerts beneficial effects by inhibiting growth-promoting pathways and reducing proteinuria. We examined whether a 2-wk treatment with a daily dose of ANG-(1-7) (0.6 mg·kg(-1)·day(-1)) exerts renoprotective effects in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Body weight, glycemia, triglyceridemia, cholesterolemia, as well as plasma levels of Na+ and K+ were determined both at the beginning and at the end of the treatment. Also, the weekly evolution of arterial blood pressure, proteinuria, and creatinine clearance was evaluated. Renal fibrosis was determined by Masson's trichrome staining. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, and nuclear factor-κB (NF-κB) levels were determined by immunohistochemistry and confirmed by Western blotting analysis. The levels of glomerular nephrin were assessed by immunofluorescence. Chronic administration of ANG-(1-7) normalized arterial pressure, reduced glycemia and triglyceridemia, improved proteinuria, and ameliorated structural alterations in the kidney of SHRSP as shown by a restoration of glomerular nephrin levels as detected by immunofluorescence. These results were accompanied with a decrease in both the immunostaining and abundance of IL-6, TNF-α, and NF-κB. In this context, the current study provides strong evidence for a protective role of ANG-(1-7) in the kidney.

    Topics: Angiotensin I; Animals; Blood Pressure; Interleukin-6; Kidney; Male; Membrane Proteins; NF-kappa B; Peptide Fragments; Proteinuria; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Sodium Chloride; Tumor Necrosis Factor-alpha

2011
Ovariectomy is protective against renal injury in the high-salt-fed older mRen2. Lewis rat.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:4

    Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.

    Topics: Aging; Angiotensin I; Angiotensin II; Animals; Animals, Congenic; Blood Pressure; C-Reactive Protein; Cell Adhesion Molecules; Disease Models, Animal; Female; Fibrosis; Hypertension; Hypertrophy; Insulin-Like Growth Factor I; Intracellular Signaling Peptides and Proteins; Kidney; Kidney Diseases; Membrane Proteins; Ovariectomy; Peptide Fragments; Proteinuria; Rats; Rats, Inbred Lew; Renin; Renin-Angiotensin System; RNA, Messenger; Sodium Chloride, Dietary

2007