anecortave has been researched along with anecortave-acetate* in 2 studies
2 other study(ies) available for anecortave and anecortave-acetate
Article | Year |
---|---|
VBP15: preclinical characterization of a novel anti-inflammatory delta 9,11 steroid.
Δ9,11 modifications of glucocorticoids (21-aminosteroids) have been developed as drugs for protection against cell damage (lipid peroxidation; lazaroids) and inhibition of neovascularization (anecortave). Part of the rationale for developing these compounds has been the loss of glucocorticoid receptor binding due to the Δ9,11 modification, thus avoiding many immunosuppressive activities and deleterious side effect profiles associated with binding to glucocorticoid and mineralocorticoid receptors. We recently demonstrated that anecortave acetate and its 21-hydroxy analog (VBP1) do, in fact, show glucocorticoid and mineralocorticoid receptor binding activities, with potent translocation of the glucocorticoid receptor to the cell nucleus. We concluded that Δ9,11 steroids showed novel anti-inflammatory properties, retaining NF-κB inhibition, but losing deleterious glucocorticoid side effect profiles. Evidence for this was developed in pre-clinical trials of chronic muscle inflammation. Here, we describe a drug development program aimed at optimizing the Δ9,11 chemistry. Twenty Δ9,11 derivatives were tested in in vitro screens for NF-κB inhibition and GR translocation to the nucleus, and low cell toxicity. VBP15 was selected as the lead compound due to potent NF-κB inhibition and GR translocation similar to prednisone and dexamethasone, lack of transactivation properties, and good bioavailability. Phamacokinetics were similar to traditional glucocorticoid drugs with terminal half-life of 0.35 h (mice), 0.58 h (rats), 5.42 h (dogs), and bioavailability of 74.5% (mice), and 53.2% (dogs). Metabolic stability showed ≥80% remaining at 1 h of VBP6 and VBP15 in human, dog, and monkey liver microsomes. Solubility, permeability and plasma protein binding were within acceptable limits. VBP15 moderately induced CYP3A4 across the three human hepatocyte donors (24-42%), similar to other steroids. VBP15 is currently under development for treatment of Duchenne muscular dystrophy. Topics: Animals; Anti-Inflammatory Agents; Cell Nucleus; Cell Survival; Dogs; Drug Evaluation, Preclinical; Glucocorticoids; Haplorhini; Humans; Male; Mice; NF-kappa B; Pregnadienediols; Rats | 2013 |
In vitro transport and partitioning of AL-4940, active metabolite of angiostatic agent anecortave acetate, in ocular tissues of the posterior segment.
The purpose of this study was to evaluate partitioning into and transport across posterior segment tissues (sclera, retinal pigment epithelium (RPE)-choroid) of AL-4940, the active metabolite of angiostatic cortisene anecortave acetate (AL-3789).. Transport of [(14)C]-AL-4940 was measured through RPE-choroid-sclera (RCS) and sclera, excised from Dutch Belted pigmented rabbits' eyes, in the directions of scleral to vitreal (S-->V) and vitreal to scleral (V-->S) for 3 h at 37 degrees C using Ussing chambers. Tissue integrity was monitored by transepithelial electrical resistance (TEER), potential difference (PD), and biochemical assay (LDH). Partitioning in RPE-choroid and sclera was determined separately for both [(14)C]-AL-4940 and [(14)C]-AL-3789. Mathematical analysis for bilaminate membranes used partitioning and transport data to derive diffusion coefficients for 2 tissue layers sclera and RPE-choroid.. Partitioning of drug in tissue was comparable for both [(14)C]-AL-4940 and [(14)C]-AL-3789. Partition coefficients of drug in tissue were 2.2 for sclera and about 4 for RPE-choroid. Permeability through sclera alone was about 3 x 10(-5) cm/s and about 1 x 10(-5) cm/s through the RCS tissue, irrespective of the direction of transport (S-->V) or (V-->S). Results from bioelectrical and biochemical evaluation of tissue with modified LDH assay provided evidence that the RCS tissue preparation remained viable during the period of transport study.. The thin RPE-choroid layer contributes significantly to resistance to drug transport, and diffusivity in this layer is 10 times less than in sclera. This experimental scheme is proposed as an important component for the development of a general ocular physiologically based pharmacokinetic model. Topics: Angiogenesis Inhibitors; Animals; Biological Transport, Active; Choroid; Diffusion Chambers, Culture; Electric Impedance; Hydrocortisone; Membrane Potentials; Models, Theoretical; Pregnadienediols; Rabbits; Retinal Pigment Epithelium; Sclera | 2010 |