Page last updated: 2024-08-17

androstenedione and phytosterols

androstenedione has been researched along with phytosterols in 41 studies

Research

Studies (41)

TimeframeStudies, this research(%)All Research%
pre-19901 (2.44)18.7374
1990's0 (0.00)18.2507
2000's3 (7.32)29.6817
2010's22 (53.66)24.3611
2020's15 (36.59)2.80

Authors

AuthorsStudies
Fratiello, A; Stover, CS1
Gomes, J; Malaviya, A1
Fu, J; Lin, J; Lin, Y; Qu, Y; Song, X1
Bekaert, K; Bussche, JV; De Brabander, HF; Janssen, CR; Noppe, H; Thas, O; Vanhaecke, L; Verheyden, K; Wille, K1
Bekaert, K; De Brabander, HF; Janssen, CR; Noppe, H; Van Immerseel, F; Vanden Bussche, J; Vanhaecke, L; Verheyden, K; Wille, K; Zorn, H1
Fan, SY; Wang, FQ; Wei, DZ; Wei, W2
Chen, QH; He, GQ; Peng, Y; Ruan, H; Su, ZR; Zhang, XY1
Ashapkin, VV; Bragin, EY; Donova, MV; Dovbnya, DV; Egorova, OV; Ivashina, TV; Malakho, SG; Pekov, YA; Schelkunov, MI; Shtratnikova, VY; Sokolov, SL1
Wang, FQ; Wei, DZ; Xu, LQ; Yao, K1
Feng, JX; Gao, XQ; Wang, XD; Wei, DZ; Xu, XW1
Bailly-Chouriberry, L; Bonnaire, Y; Decloedt, AI; Garcia, P; Popot, MA; Vanden Bussche, J; Vanhaecke, L1
Li, H; Rao, Z; Shao, M; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, X1
Liu, HH; Wang, FQ; Wei, DZ; Xiong, LB; Xu, LQ1
Amoroso, A; Mancilla, RA; Pavez-Díaz, R1
Josefsen, KD; Nordborg, A; Sletta, H1
Bahíllo, E; Barredo, JL; Martínez-Cámara, S; Rodríguez-Sáiz, M1
Felpeto-Santero, C; Fernández-Cabezón, L; Galán, B; García, JL; García-Fernández, J; Martínez, I1
Donova, MV; Dovbnya, D; Khomutov, S; Kollerov, V1
Li, H; Ma, Y; Shi, J; Wang, M; Wang, X; Xu, Z1
Liu, YJ; Sun, WJ; Wang, FQ; Wei, DZ; Xiong, LB1
Amoroso, A; Little, C; Mancilla, RA1
He, K; Song, H; Sun, H1
Jiang, BH; Liu, ZZ; Ning, FH; Xu, HX; Xu, SD1
Bragin, EY; Donova, MV; Dovbnya, DV; Schelkunov, MI; Shtratnikova, VY1
Tarkowská, D1
Chen, R; Wang, D; Wang, X; Wei, D; Wu, Y1
Luo, J; Shen, Y; Wang, L; Wang, M; Wang, X; Xia, M; Zhang, Y; Zhou, X1
Ji, YQ; Liu, HH; Liu, XZ; Meng, XG; Song, XW; Wang, FQ; Wei, DZ; Xiong, LB1
Chen, T; Cheng, X; He, Y; Huang, Y; Li, X; Peng, F; Song, S; Su, Z; Wang, H; Yang, F1
Chen, X; Deng, Z; Jiang, K; Peng, H; Qu, X; Wang, Y; Zhang, W; Zhang, Y1
Liu, C; Osire, T; Rao, Z; Shao, M; Xu, Z1
Amaral, PFF; Ferreira, TF; Fraga, JL; Nunes, VO; Pessoa, FLP; Vanzellotti, NC1
Shen, Y; Su, L; Su, Z; Wang, J; Wang, M; Yu, J; Yuan, C; Zhang, Z1
Du, G; Han, S; Liu, X; Shi, J; Sun, J; Yuan, C; Zhang, B; Zhang, J1
Pan, D; Xiao, P; Zhang, Y; Zhou, X1
Chamorro, S; Mondaca, MA; Vidal, G; Vidal, M1
Josefsen, KD; Le, SB; Nordborg, A; Olsen, SM; Sletta, H2
Barredo, JL; de la Torre, M; Martínez-Cámara, S; Rodríguez-Sáiz, M1
Feng, J; Wu, Q; Zhang, R; Zhang, Z; Zhu, D1

Reviews

5 review(s) available for androstenedione and phytosterols

ArticleYear
Androstenedione production by biotransformation of phytosterols.
    Bioresource technology, 2008, Volume: 99, Issue:15

    Topics: Androstenedione; Biotransformation; Phytosterols

2008
Plants are Capable of Synthesizing Animal Steroid Hormones.
    Molecules (Basel, Switzerland), 2019, Jul-16, Volume: 24, Issue:14

    Topics: Androstadienes; Androstenedione; Animals; Biosynthetic Pathways; Estrogens; Phytosterols; Plants; Progesterone; Steroids; Testosterone

2019
Biotransformation of Phytosterols into Androstenedione-A Technological Prospecting Study.
    Molecules (Basel, Switzerland), 2022, May-15, Volume: 27, Issue:10

    Topics: Androgens; Androstenedione; Biotransformation; Mycobacteriaceae; Phytosterols; Steroids

2022
New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in
    International journal of molecular sciences, 2023, Mar-09, Volume: 24, Issue:6

    Topics: Androstenedione; Biotechnology; Biotransformation; Fermentation; Metabolic Networks and Pathways; Mycobacteriaceae; Phytosterols; Steroids

2023
[Construction of strains for bioconversion of steroid key intermediates and intelligent industrial production].
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 2022, Nov-25, Volume: 38, Issue:11

    Topics: Androstenedione; Pharmaceutical Preparations; Phytosterols; Sapogenins; Steroids

2022

Trials

1 trial(s) available for androstenedione and phytosterols

ArticleYear
Excretion of endogenous boldione in human urine: influence of phytosterol consumption.
    The Journal of steroid biochemistry and molecular biology, 2009, Volume: 117, Issue:1-3

    Topics: Adult; Anabolic Agents; Androstadienes; Androstenedione; Biotransformation; Epitestosterone; Female; Food Analysis; Gas Chromatography-Mass Spectrometry; Humans; Male; Middle Aged; Molecular Structure; Phytosterols; Tandem Mass Spectrometry; Testosterone; Young Adult

2009

Other Studies

35 other study(ies) available for androstenedione and phytosterols

ArticleYear
A direct, low-temperature 1-H, 13-C, and 19-F nuclear magnetic resonance study of boron trifluoride complexes with stigmasterol, androstanolone, androsterone, testosterone, nortestosterone, androstenedione, and progesterone-1,2.
    The Journal of organic chemistry, 1975, May-02, Volume: 40, Issue:9

    Topics: Androstanes; Androstenedione; Androsterone; Binding Sites; Boranes; Carbon Isotopes; Dihydrotestosterone; Fluorides; Fluorine; Hydrogen; Ligands; Magnetic Resonance Spectroscopy; Methods; Nandrolone; Phytosterols; Progesterone; Stigmasterol; Temperature; Testosterone

1975
Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld.
    Bioresource technology, 2009, Volume: 100, Issue:5

    Topics: Androstenedione; Base Sequence; Bioreactors; Biotechnology; Chromatography, High Pressure Liquid; Fusarium; Glycine max; Magnetic Resonance Spectroscopy; Mass Spectrometry; Molecular Sequence Data; Phytosterols; RNA, Ribosomal, 18S; Sequence Analysis, DNA; Spectrophotometry, Infrared; Zea mays

2009
Endogenous boldenone-formation in cattle: alternative invertebrate organisms to elucidate the enzymatic pathway and the potential role of edible fungi on cattle's feed.
    The Journal of steroid biochemistry and molecular biology, 2010, Volume: 119, Issue:3-5

    Topics: Anabolic Agents; Androstenedione; Animal Feed; Animal Use Alternatives; Animals; Biosynthetic Pathways; Cattle; Chromatography, High Pressure Liquid; Crustacea; Diptera; Fungi; Larva; Microsomes; Phytosterols; Pleurotus; Substance Abuse Detection; Tandem Mass Spectrometry; Testosterone

2010
Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione.
    Applied and environmental microbiology, 2010, Volume: 76, Issue:13

    Topics: Amino Acid Sequence; Androstadienes; Androstenedione; Biotechnology; Cloning, Molecular; Gene Deletion; Genetic Engineering; Glycine max; Molecular Sequence Data; Mycobacterium; Oxidoreductases; Phytosterols; Polymerase Chain Reaction

2010
Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08.
    Journal of Zhejiang University. Science. B, 2013, Volume: 14, Issue:2

    Topics: Androstenedione; Biotransformation; Mutation; Mycobacterium; Phytosterols; Species Specificity

2013
Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    The Journal of steroid biochemistry and molecular biology, 2013, Volume: 138

    Topics: Androstadienes; Androstenedione; Bacterial Proteins; Mixed Function Oxygenases; Mycobacterium; Oxidoreductases; Phytosterols

2013
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01.
    World journal of microbiology & biotechnology, 2014, Volume: 30, Issue:7

    Topics: Androstenedione; Bacterial Proteins; Mycobacterium; Oxidoreductases; Phytosterols

2014
Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
    Metabolic engineering, 2014, Volume: 24

    Topics: Androstenedione; Bacterial Proteins; Mixed Function Oxygenases; Mycobacterium; Oxidoreductases; Phytosterols

2014
Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
    Letters in applied microbiology, 2015, Volume: 61, Issue:1

    Topics: Androstenedione; Biotransformation; Cell Nucleus; Mycobacterium; Phytosterols; Temperature

2015
In vitro simulation of the equine hindgut as a tool to study the influence of phytosterol consumption on the excretion of anabolic-androgenic steroids in horses.
    The Journal of steroid biochemistry and molecular biology, 2015, Volume: 152

    Topics: Amino Acids; Anabolic Agents; Androgens; Androstadienes; Androstenedione; Animals; Chromatography, High Pressure Liquid; Dietary Carbohydrates; Digestion; Fatty Acids, Volatile; Female; Horses; Male; Mycobacterium; Phytosterols; Steroids; Tandem Mass Spectrometry; Testosterone

2015
A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095.
    Journal of industrial microbiology & biotechnology, 2016, Volume: 43, Issue:5

    Topics: Androstadienes; Androstenedione; Bacillus subtilis; Biotransformation; Hydrogenation; Mutant Proteins; Mycobacterium; Nontuberculous Mycobacteria; Oxidoreductases; Phytosterols

2016
Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum.
    Journal of agricultural and food chemistry, 2017, Jan-25, Volume: 65, Issue:3

    Topics: Androstenedione; Bacterial Proteins; Biotransformation; Glycine max; Mycobacterium; Phytosterols; Plant Extracts; Sigma Factor

2017
Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione.
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1645

    Topics: Androstenedione; Biotransformation; Fermentation; Metabolic Engineering; Mycobacterium; Phytosterols; Water

2017
Bioconversion of Phytosterols into Androstenedione by Mycobacterium.
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1645

    Topics: Androstenedione; Chromatography, Liquid; Fermentation; Mycobacterium; Phytosterols; Plant Oils; Tandem Mass Spectrometry

2017
Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1645

    Topics: Androstenedione; Biotransformation; Glycine max; Mycobacterium; Phytosterols; Plant Oils; Water

2017
Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1645

    Topics: Androstadienes; Androstenedione; Biotechnology; Biotransformation; Fermentation; Mycobacterium smegmatis; Phytosterols

2017
Obtaining of 11α-Hydroxyandrost-4-ene-3,17-dione from Natural Sterols.
    Methods in molecular biology (Clifton, N.J.), 2017, Volume: 1645

    Topics: Actinobacteria; Adrenal Cortex Hormones; Androstenedione; Biotransformation; Cholesterol; Fermentation; Phytosterols; Steroids; Sterols

2017
[Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 2017, Jul-25, Volume: 33, Issue:7

    Topics: Androstenedione; Biotransformation; Fermentation; Industrial Microbiology; Mutation; Mycobacterium; Phytosterols

2017
Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum.
    Journal of agricultural and food chemistry, 2017, Dec-06, Volume: 65, Issue:48

    Topics: Androstenedione; Bacterial Proteins; Cell Membrane; Genetic Engineering; Glycine max; Metalloproteases; Mycobacterium; Phytosterols; Proteolysis

2017
Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805.
    Applied biochemistry and biotechnology, 2018, Volume: 185, Issue:2

    Topics: Androstenedione; Biomass; Mycobacterium; Phytosterols

2018
Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione.
    Biotechnology letters, 2018, Volume: 40, Issue:4

    Topics: Androstenedione; Biological Transport; Fermentation; Metabolic Engineering; Mycobacterium tuberculosis; Phytosterols

2018
Refining androstenedione and bisnorcholenaldehyde from mother liquor of phytosterol fermentation using macroporous resin column chromatography followed by crystallization.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2018, Mar-15, Volume: 1079

    Topics: Adsorption; Androstenedione; Crystallization; Ethanol; Fermentation; Phytosterols; Polymers; Porosity; Pregnenes; Solvents; Water

2018
Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D.
    BMC biotechnology, 2019, 06-25, Volume: 19, Issue:1

    Topics: Androstenedione; Bacterial Proteins; Base Sequence; Gene Expression Profiling; Genome, Bacterial; Metabolic Networks and Pathways; Models, Chemical; Molecular Structure; Mycobacterium; Oxygenases; Phytosterols; Sequence Homology, Nucleic Acid; Steroids; Transcriptome

2019
Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum.
    Applied biochemistry and biotechnology, 2020, Volume: 190, Issue:4

    Topics: Alcohols; Ammonium Compounds; Androstenedione; Biotransformation; Hydrogen-Ion Concentration; Industrial Microbiology; Mycobacteriaceae; Mycobacterium; Nitrates; Oxidation-Reduction; Phytosterols; Steroids; Sterols

2020
Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum.
    Microbial cell factories, 2020, Jan-28, Volume: 19, Issue:1

    Topics: Acyl Coenzyme A; Androstenedione; Bacterial Proteins; Biotechnology; Biotransformation; Citrate (si)-Synthase; Mycobacteriaceae; Nitrogen; Operon; Phytosterols; Transcription Factors

2020
Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum.
    Journal of biotechnology, 2020, Nov-10, Volume: 323

    Topics: Androstenedione; Bacterial Proteins; Biological Transport; Biotransformation; Cell Membrane; Cell Wall; Gene Deletion; Genes, Bacterial; Lipopolysaccharides; Metabolic Engineering; Mycobacteriaceae; Permeability; Phytosterols; Sterols

2020
Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways.
    Microbial cell factories, 2020, Oct-02, Volume: 19, Issue:1

    Topics: Androstenedione; Bacterial Proteins; Metabolic Networks and Pathways; Mycobacteriaceae; Phytosterols; Whole Genome Sequencing

2020
A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors.
    Angewandte Chemie (International ed. in English), 2021, 03-01, Volume: 60, Issue:10

    Topics: Androstenedione; Bacterial Proteins; Biocatalysis; Mycobacteriaceae; Oxidoreductases; Phytosterols; Pregnenes; Progesterone

2021
Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics.
    Journal of bioscience and bioengineering, 2021, Volume: 131, Issue:3

    Topics: Androstadienes; Androstenedione; Mycobacteriaceae; Phytosterols; Proteomics

2021
Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum.
    Microbial cell factories, 2022, Oct-20, Volume: 21, Issue:1

    Topics: Androstenedione; Metabolic Networks and Pathways; Mycobacterium; Phytosterols; Sterols

2022
Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ
    Microbial cell factories, 2023, Mar-16, Volume: 22, Issue:1

    Topics: Androstenedione; Mycobacterium fortuitum; Oxidoreductases; Phytosterols; Steroids

2023
Selection of Biodegrading Phytosterol Strains.
    Methods in molecular biology (Clifton, N.J.), 2023, Volume: 2704

    Topics: Androstenedione; Carbon; Chromatography, Thin Layer; Gas Chromatography-Mass Spectrometry; Phytosterols

2023
Cultivation of Mycolicibacterium spp. Mutants in Miniaturized and High-Throughput Format to Characterize Their Growth, Phytosterol Conversion Ability, and Resistance to the Steroid Products.
    Methods in molecular biology (Clifton, N.J.), 2023, Volume: 2704

    Topics: Androstenedione; Chromatography, Liquid; Culture Media; Phytosterols; Steroids

2023
Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Methods in molecular biology (Clifton, N.J.), 2023, Volume: 2704

    Topics: Androstenedione; Androstenes; Bioreactors; Phytosterols; Water

2023
Bioconversion of Phytosterols into Androstenedione by Mycolicibacterium.
    Methods in molecular biology (Clifton, N.J.), 2023, Volume: 2704

    Topics: Androstenedione; Bioreactors; Cell Nucleus; Humans; Phytosterols; Tremor; Water

2023