androstenedione has been researched along with phytosterols in 41 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (2.44) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (7.32) | 29.6817 |
2010's | 22 (53.66) | 24.3611 |
2020's | 15 (36.59) | 2.80 |
Authors | Studies |
---|---|
Fratiello, A; Stover, CS | 1 |
Gomes, J; Malaviya, A | 1 |
Fu, J; Lin, J; Lin, Y; Qu, Y; Song, X | 1 |
Bekaert, K; Bussche, JV; De Brabander, HF; Janssen, CR; Noppe, H; Thas, O; Vanhaecke, L; Verheyden, K; Wille, K | 1 |
Bekaert, K; De Brabander, HF; Janssen, CR; Noppe, H; Van Immerseel, F; Vanden Bussche, J; Vanhaecke, L; Verheyden, K; Wille, K; Zorn, H | 1 |
Fan, SY; Wang, FQ; Wei, DZ; Wei, W | 2 |
Chen, QH; He, GQ; Peng, Y; Ruan, H; Su, ZR; Zhang, XY | 1 |
Ashapkin, VV; Bragin, EY; Donova, MV; Dovbnya, DV; Egorova, OV; Ivashina, TV; Malakho, SG; Pekov, YA; Schelkunov, MI; Shtratnikova, VY; Sokolov, SL | 1 |
Wang, FQ; Wei, DZ; Xu, LQ; Yao, K | 1 |
Feng, JX; Gao, XQ; Wang, XD; Wei, DZ; Xu, XW | 1 |
Bailly-Chouriberry, L; Bonnaire, Y; Decloedt, AI; Garcia, P; Popot, MA; Vanden Bussche, J; Vanhaecke, L | 1 |
Li, H; Rao, Z; Shao, M; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, X | 1 |
Liu, HH; Wang, FQ; Wei, DZ; Xiong, LB; Xu, LQ | 1 |
Amoroso, A; Mancilla, RA; Pavez-Díaz, R | 1 |
Josefsen, KD; Nordborg, A; Sletta, H | 1 |
Bahíllo, E; Barredo, JL; Martínez-Cámara, S; Rodríguez-Sáiz, M | 1 |
Felpeto-Santero, C; Fernández-Cabezón, L; Galán, B; García, JL; García-Fernández, J; Martínez, I | 1 |
Donova, MV; Dovbnya, D; Khomutov, S; Kollerov, V | 1 |
Li, H; Ma, Y; Shi, J; Wang, M; Wang, X; Xu, Z | 1 |
Liu, YJ; Sun, WJ; Wang, FQ; Wei, DZ; Xiong, LB | 1 |
Amoroso, A; Little, C; Mancilla, RA | 1 |
He, K; Song, H; Sun, H | 1 |
Jiang, BH; Liu, ZZ; Ning, FH; Xu, HX; Xu, SD | 1 |
Bragin, EY; Donova, MV; Dovbnya, DV; Schelkunov, MI; Shtratnikova, VY | 1 |
Tarkowská, D | 1 |
Chen, R; Wang, D; Wang, X; Wei, D; Wu, Y | 1 |
Luo, J; Shen, Y; Wang, L; Wang, M; Wang, X; Xia, M; Zhang, Y; Zhou, X | 1 |
Ji, YQ; Liu, HH; Liu, XZ; Meng, XG; Song, XW; Wang, FQ; Wei, DZ; Xiong, LB | 1 |
Chen, T; Cheng, X; He, Y; Huang, Y; Li, X; Peng, F; Song, S; Su, Z; Wang, H; Yang, F | 1 |
Chen, X; Deng, Z; Jiang, K; Peng, H; Qu, X; Wang, Y; Zhang, W; Zhang, Y | 1 |
Liu, C; Osire, T; Rao, Z; Shao, M; Xu, Z | 1 |
Amaral, PFF; Ferreira, TF; Fraga, JL; Nunes, VO; Pessoa, FLP; Vanzellotti, NC | 1 |
Shen, Y; Su, L; Su, Z; Wang, J; Wang, M; Yu, J; Yuan, C; Zhang, Z | 1 |
Du, G; Han, S; Liu, X; Shi, J; Sun, J; Yuan, C; Zhang, B; Zhang, J | 1 |
Pan, D; Xiao, P; Zhang, Y; Zhou, X | 1 |
Chamorro, S; Mondaca, MA; Vidal, G; Vidal, M | 1 |
Josefsen, KD; Le, SB; Nordborg, A; Olsen, SM; Sletta, H | 2 |
Barredo, JL; de la Torre, M; Martínez-Cámara, S; Rodríguez-Sáiz, M | 1 |
Feng, J; Wu, Q; Zhang, R; Zhang, Z; Zhu, D | 1 |
5 review(s) available for androstenedione and phytosterols
Article | Year |
---|---|
Androstenedione production by biotransformation of phytosterols.
Topics: Androstenedione; Biotransformation; Phytosterols | 2008 |
Plants are Capable of Synthesizing Animal Steroid Hormones.
Topics: Androstadienes; Androstenedione; Animals; Biosynthetic Pathways; Estrogens; Phytosterols; Plants; Progesterone; Steroids; Testosterone | 2019 |
Biotransformation of Phytosterols into Androstenedione-A Technological Prospecting Study.
Topics: Androgens; Androstenedione; Biotransformation; Mycobacteriaceae; Phytosterols; Steroids | 2022 |
New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in
Topics: Androstenedione; Biotechnology; Biotransformation; Fermentation; Metabolic Networks and Pathways; Mycobacteriaceae; Phytosterols; Steroids | 2023 |
[Construction of strains for bioconversion of steroid key intermediates and intelligent industrial production].
Topics: Androstenedione; Pharmaceutical Preparations; Phytosterols; Sapogenins; Steroids | 2022 |
1 trial(s) available for androstenedione and phytosterols
Article | Year |
---|---|
Excretion of endogenous boldione in human urine: influence of phytosterol consumption.
Topics: Adult; Anabolic Agents; Androstadienes; Androstenedione; Biotransformation; Epitestosterone; Female; Food Analysis; Gas Chromatography-Mass Spectrometry; Humans; Male; Middle Aged; Molecular Structure; Phytosterols; Tandem Mass Spectrometry; Testosterone; Young Adult | 2009 |
35 other study(ies) available for androstenedione and phytosterols
Article | Year |
---|---|
A direct, low-temperature 1-H, 13-C, and 19-F nuclear magnetic resonance study of boron trifluoride complexes with stigmasterol, androstanolone, androsterone, testosterone, nortestosterone, androstenedione, and progesterone-1,2.
Topics: Androstanes; Androstenedione; Androsterone; Binding Sites; Boranes; Carbon Isotopes; Dihydrotestosterone; Fluorides; Fluorine; Hydrogen; Ligands; Magnetic Resonance Spectroscopy; Methods; Nandrolone; Phytosterols; Progesterone; Stigmasterol; Temperature; Testosterone | 1975 |
Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld.
Topics: Androstenedione; Base Sequence; Bioreactors; Biotechnology; Chromatography, High Pressure Liquid; Fusarium; Glycine max; Magnetic Resonance Spectroscopy; Mass Spectrometry; Molecular Sequence Data; Phytosterols; RNA, Ribosomal, 18S; Sequence Analysis, DNA; Spectrophotometry, Infrared; Zea mays | 2009 |
Endogenous boldenone-formation in cattle: alternative invertebrate organisms to elucidate the enzymatic pathway and the potential role of edible fungi on cattle's feed.
Topics: Anabolic Agents; Androstenedione; Animal Feed; Animal Use Alternatives; Animals; Biosynthetic Pathways; Cattle; Chromatography, High Pressure Liquid; Crustacea; Diptera; Fungi; Larva; Microsomes; Phytosterols; Pleurotus; Substance Abuse Detection; Tandem Mass Spectrometry; Testosterone | 2010 |
Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione.
Topics: Amino Acid Sequence; Androstadienes; Androstenedione; Biotechnology; Cloning, Molecular; Gene Deletion; Genetic Engineering; Glycine max; Molecular Sequence Data; Mycobacterium; Oxidoreductases; Phytosterols; Polymerase Chain Reaction | 2010 |
Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08.
Topics: Androstenedione; Biotransformation; Mutation; Mycobacterium; Phytosterols; Species Specificity | 2013 |
Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
Topics: Androstadienes; Androstenedione; Bacterial Proteins; Mixed Function Oxygenases; Mycobacterium; Oxidoreductases; Phytosterols | 2013 |
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01.
Topics: Androstenedione; Bacterial Proteins; Mycobacterium; Oxidoreductases; Phytosterols | 2014 |
Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
Topics: Androstenedione; Bacterial Proteins; Mixed Function Oxygenases; Mycobacterium; Oxidoreductases; Phytosterols | 2014 |
Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
Topics: Androstenedione; Biotransformation; Cell Nucleus; Mycobacterium; Phytosterols; Temperature | 2015 |
In vitro simulation of the equine hindgut as a tool to study the influence of phytosterol consumption on the excretion of anabolic-androgenic steroids in horses.
Topics: Amino Acids; Anabolic Agents; Androgens; Androstadienes; Androstenedione; Animals; Chromatography, High Pressure Liquid; Dietary Carbohydrates; Digestion; Fatty Acids, Volatile; Female; Horses; Male; Mycobacterium; Phytosterols; Steroids; Tandem Mass Spectrometry; Testosterone | 2015 |
A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095.
Topics: Androstadienes; Androstenedione; Bacillus subtilis; Biotransformation; Hydrogenation; Mutant Proteins; Mycobacterium; Nontuberculous Mycobacteria; Oxidoreductases; Phytosterols | 2016 |
Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum.
Topics: Androstenedione; Bacterial Proteins; Biotransformation; Glycine max; Mycobacterium; Phytosterols; Plant Extracts; Sigma Factor | 2017 |
Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione.
Topics: Androstenedione; Biotransformation; Fermentation; Metabolic Engineering; Mycobacterium; Phytosterols; Water | 2017 |
Bioconversion of Phytosterols into Androstenedione by Mycobacterium.
Topics: Androstenedione; Chromatography, Liquid; Fermentation; Mycobacterium; Phytosterols; Plant Oils; Tandem Mass Spectrometry | 2017 |
Scale-Up of Phytosterols Bioconversion into Androstenedione.
Topics: Androstenedione; Biotransformation; Glycine max; Mycobacterium; Phytosterols; Plant Oils; Water | 2017 |
Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
Topics: Androstadienes; Androstenedione; Biotechnology; Biotransformation; Fermentation; Mycobacterium smegmatis; Phytosterols | 2017 |
Obtaining of 11α-Hydroxyandrost-4-ene-3,17-dione from Natural Sterols.
Topics: Actinobacteria; Adrenal Cortex Hormones; Androstenedione; Biotransformation; Cholesterol; Fermentation; Phytosterols; Steroids; Sterols | 2017 |
[Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
Topics: Androstenedione; Biotransformation; Fermentation; Industrial Microbiology; Mutation; Mycobacterium; Phytosterols | 2017 |
Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum.
Topics: Androstenedione; Bacterial Proteins; Cell Membrane; Genetic Engineering; Glycine max; Metalloproteases; Mycobacterium; Phytosterols; Proteolysis | 2017 |
Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805.
Topics: Androstenedione; Biomass; Mycobacterium; Phytosterols | 2018 |
Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione.
Topics: Androstenedione; Biological Transport; Fermentation; Metabolic Engineering; Mycobacterium tuberculosis; Phytosterols | 2018 |
Refining androstenedione and bisnorcholenaldehyde from mother liquor of phytosterol fermentation using macroporous resin column chromatography followed by crystallization.
Topics: Adsorption; Androstenedione; Crystallization; Ethanol; Fermentation; Phytosterols; Polymers; Porosity; Pregnenes; Solvents; Water | 2018 |
Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D.
Topics: Androstenedione; Bacterial Proteins; Base Sequence; Gene Expression Profiling; Genome, Bacterial; Metabolic Networks and Pathways; Models, Chemical; Molecular Structure; Mycobacterium; Oxygenases; Phytosterols; Sequence Homology, Nucleic Acid; Steroids; Transcriptome | 2019 |
Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum.
Topics: Alcohols; Ammonium Compounds; Androstenedione; Biotransformation; Hydrogen-Ion Concentration; Industrial Microbiology; Mycobacteriaceae; Mycobacterium; Nitrates; Oxidation-Reduction; Phytosterols; Steroids; Sterols | 2020 |
Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum.
Topics: Acyl Coenzyme A; Androstenedione; Bacterial Proteins; Biotechnology; Biotransformation; Citrate (si)-Synthase; Mycobacteriaceae; Nitrogen; Operon; Phytosterols; Transcription Factors | 2020 |
Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum.
Topics: Androstenedione; Bacterial Proteins; Biological Transport; Biotransformation; Cell Membrane; Cell Wall; Gene Deletion; Genes, Bacterial; Lipopolysaccharides; Metabolic Engineering; Mycobacteriaceae; Permeability; Phytosterols; Sterols | 2020 |
Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways.
Topics: Androstenedione; Bacterial Proteins; Metabolic Networks and Pathways; Mycobacteriaceae; Phytosterols; Whole Genome Sequencing | 2020 |
A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors.
Topics: Androstenedione; Bacterial Proteins; Biocatalysis; Mycobacteriaceae; Oxidoreductases; Phytosterols; Pregnenes; Progesterone | 2021 |
Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics.
Topics: Androstadienes; Androstenedione; Mycobacteriaceae; Phytosterols; Proteomics | 2021 |
Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum.
Topics: Androstenedione; Metabolic Networks and Pathways; Mycobacterium; Phytosterols; Sterols | 2022 |
Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ
Topics: Androstenedione; Mycobacterium fortuitum; Oxidoreductases; Phytosterols; Steroids | 2023 |
Selection of Biodegrading Phytosterol Strains.
Topics: Androstenedione; Carbon; Chromatography, Thin Layer; Gas Chromatography-Mass Spectrometry; Phytosterols | 2023 |
Cultivation of Mycolicibacterium spp. Mutants in Miniaturized and High-Throughput Format to Characterize Their Growth, Phytosterol Conversion Ability, and Resistance to the Steroid Products.
Topics: Androstenedione; Chromatography, Liquid; Culture Media; Phytosterols; Steroids | 2023 |
Scale-Up of Phytosterols Bioconversion into Androstenedione.
Topics: Androstenedione; Androstenes; Bioreactors; Phytosterols; Water | 2023 |
Bioconversion of Phytosterols into Androstenedione by Mycolicibacterium.
Topics: Androstenedione; Bioreactors; Cell Nucleus; Humans; Phytosterols; Tremor; Water | 2023 |